BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 6322923)

  • 1. Electrical activity of the reticular formation during aversive and appetitive conditioning in rats.
    Irisawa N; Iwasaki T
    Brain Res; 1984 Apr; 296(2):211-23. PubMed ID: 6322923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aversive-CS-specific alterations of evoked potentials in limbic and related areas of rats.
    Irisawa N; Iwasaki T
    Physiol Behav; 1986; 37(1):61-7. PubMed ID: 3737725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminative properties of aversive electrical stimulations of the so-called "mesencephalic locomotor region": a parametric study.
    Depoortere R; Sandner G; Di Scala G
    Physiol Behav; 1991 Feb; 49(2):339-45. PubMed ID: 2062906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appetitive-aversive interactions in Pavlovian fear conditioning.
    Nasser HM; McNally GP
    Behav Neurosci; 2012 Jun; 126(3):404-22. PubMed ID: 22642885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using signaled barpressing tasks to study the neural substrates of appetitive and aversive learning in rats: behavioral manipulations and cerebellar lesions.
    Steinmetz JE; Logue SF; Miller DP
    Behav Neurosci; 1993 Dec; 107(6):941-54. PubMed ID: 8136069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.
    Nasser HM; McNally GP
    Learn Mem; 2013 Mar; 20(4):220-8. PubMed ID: 23512938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appetitive and aversive information coding in the primate dorsal raphĂ© nucleus.
    Hayashi K; Nakao K; Nakamura K
    J Neurosci; 2015 Apr; 35(15):6195-208. PubMed ID: 25878290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The convergence of information about rewarding and aversive stimuli in single neurons.
    Morrison SE; Salzman CD
    J Neurosci; 2009 Sep; 29(37):11471-83. PubMed ID: 19759296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of average evoked potentials in cats during conditioning before and after tegmental lesions.
    Majkowski J; Sobieszek A
    Physiol Behav; 1975 Feb; 14(2):123-31. PubMed ID: 1161818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NGC-evoked nociceptive behaviors: I. Effect of nucleus gigantocellularis stimulation.
    Roberts VJ
    Physiol Behav; 1992 Jan; 51(1):65-71. PubMed ID: 1311111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement.
    Cahill L; McGaugh JL
    Behav Neurosci; 1990 Aug; 104(4):532-43. PubMed ID: 2206424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of neurons in the ventral tegmental region of the behaving monkey.
    Fabre M; Rolls ET; Ashton JP; Williams G
    Behav Brain Res; 1983 Aug; 9(2):213-35. PubMed ID: 6309194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential involvement of the central amygdala in appetitive versus aversive learning.
    Knapska E; Walasek G; Nikolaev E; Neuhäusser-Wespy F; Lipp HP; Kaczmarek L; Werka T
    Learn Mem; 2006; 13(2):192-200. PubMed ID: 16547163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolytic lesions to nucleus accumbens core and shell have dissociable effects on conditioning to discrete and contextual cues in aversive and appetitive procedures respectively.
    Cassaday HJ; Horsley RR; Norman C
    Behav Brain Res; 2005 May; 160(2):222-35. PubMed ID: 15863219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain stem neurons that fire selectively to a conditioned stimulus for shock.
    Vertes RP; Miller NE
    Brain Res; 1976 Feb; 103(2):229-42. PubMed ID: 1252917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amygdala-hypothalamic control of feeding behavior in monkey: single cell responses before and after reversible blockade of temporal cortex or amygdala projections.
    Fukuda M; Ono T
    Behav Brain Res; 1993 Jun; 55(2):233-41. PubMed ID: 8395181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NGC-evoked nociceptive behaviors: II. Effect of midbrain and thalamus lesions.
    Roberts VJ
    Physiol Behav; 1992 Jan; 51(1):73-80. PubMed ID: 1311112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses.
    Jhou TC; Fields HL; Baxter MG; Saper CB; Holland PC
    Neuron; 2009 Mar; 61(5):786-800. PubMed ID: 19285474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paralemniscal reticular formation: response of cells to a noxious stimulus.
    Hardy SG; Haigler HJ; Leichnetz GR
    Brain Res; 1983 May; 267(2):217-23. PubMed ID: 6307465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.
    Butt AE; Schultz JA; Arnold LL; Garman EE; George CL; Garraghty PE
    Integr Physiol Behav Sci; 2003; 38(4):253-71. PubMed ID: 15119377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.