These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6322930)

  • 1. Stress-induced analgesia in frogs: evidence for the involvement of an opioid system.
    Pezalla PD; Dicig M
    Brain Res; 1984 Apr; 296(2):356-60. PubMed ID: 6322930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different opioid systems may participate in post-electro-convulsive shock (ECS) analgesia and catalepsy.
    Urca G; Yitzhaky J; Frenk H
    Brain Res; 1981 Aug; 219(2):385-96. PubMed ID: 6266608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naloxone blocks the analgesic action of levorphanol but not of dextrorphan in the leopard frog.
    Stevens CW; Pezalla PD
    Brain Res; 1984 May; 301(1):171-4. PubMed ID: 6329442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spinal opioid synapse mediates the interaction of spinal and brain stem sites in morphine analgesia.
    Levine JD; Lane SR; Gordon NC; Fields HL
    Brain Res; 1982 Mar; 236(1):85-91. PubMed ID: 6279239
    [No Abstract]   [Full Text] [Related]  

  • 5. Opiate receptors for behavioral analgesia resemble those related to the depression of spinal nociceptive neurons.
    Yaksh TL
    Science; 1978 Mar; 199(4334):1231-3. PubMed ID: 204008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analgesia induced by electroconvulsive shock: brain enkephalins may mediate tolerance but not the induction of analgesia.
    Urca G; Nof A; Weissman BA; Sarne Y
    Brain Res; 1983 Feb; 260(2):271-7. PubMed ID: 6299458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of spinal mu opioid receptors in the development of morphine tolerance and dependence.
    DeLander GE; Portoghese PS; Takemori AE
    J Pharmacol Exp Ther; 1984 Oct; 231(1):91-6. PubMed ID: 6092607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of neonatal exposure to chronic footshock on pain-responsiveness and sensitivity to morphine after maturation in the rat.
    Shimada C; Kurumiya S; Noguchi Y; Umemoto M
    Behav Brain Res; 1990 Jan; 36(1-2):105-11. PubMed ID: 2154233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clip induced analgesia and immobility in the mouse: activation by different sensory modalities.
    Fleischmann A; Urca G
    Physiol Behav; 1988; 44(1):39-45. PubMed ID: 2853378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between morphine analgesia and the activity of bulbo-spinal serotonergic system as studied by tolerance phenomenon.
    Godefroy F; Weil-Fugazza J; Bineau-Thurotte M; Besson JM
    Brain Res; 1981 Dec; 226(1-2):201-10. PubMed ID: 6271344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An opiate mechanism involved in conditioned analgesia influences forced swim-induced immobility.
    Murua VS; Molina VA
    Physiol Behav; 1990 Nov; 48(5):641-5. PubMed ID: 1964501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and expression of endogenous pain control mechanisms in rats given repeated nociceptive tests under the influence of naloxone.
    Rochford J; Stewart J
    Behav Neurosci; 1987 Feb; 101(1):87-103. PubMed ID: 3030357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Endogenous morphine-like substances and their analgesic mechanism (2) (author's transl)].
    Shimoji K
    Masui; 1979 Apr; 28(4):335-51. PubMed ID: 220437
    [No Abstract]   [Full Text] [Related]  

  • 14. Spinal and supraspinal opioid analgesia in the mouse: the role of subpopulations of opioid binding sites.
    Ling GS; Pasternak GW
    Brain Res; 1983 Jul; 271(1):152-6. PubMed ID: 6309332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid footshock-induced analgesia in mice acutely falls by stress prolongation.
    Menendez L; Andres-Trelles F; Hidalgo A; Baamonde A
    Physiol Behav; 1993 Jun; 53(6):1115-9. PubMed ID: 8394022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of mu 1-opiate receptors in supraspinal opiate analgesia: a microinjection study.
    Bodnar RJ; Williams CL; Lee SJ; Pasternak GW
    Brain Res; 1988 Apr; 447(1):25-34. PubMed ID: 2838129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the opiate receptors of the substantia gelatinosa contribute to the depression, by intravenous morphine, of the spinal transmission of impulses in unmyelinated primary afferents.
    Johnson SM; Duggan AW
    Brain Res; 1981 Feb; 207(1):223-8. PubMed ID: 6258733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spinal site mediates opiate analgesia in frogs.
    Stevens CW; Pezalla PD
    Life Sci; 1983 Nov; 33(21):2097-103. PubMed ID: 6606100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking mu opioid receptors in the spinal cord prevents the analgesic action by subsequent systemic opioids.
    Chen SR; Pan HL
    Brain Res; 2006 Apr; 1081(1):119-25. PubMed ID: 16499888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formalin test and the opioid nature of stress-induced analgesia.
    Maier SF; Ryan SM; Kurtz R
    Behav Neural Biol; 1984 May; 41(1):54-62. PubMed ID: 6087789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.