BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6323010)

  • 1. Effects of redox agents on the Ca2+-activated K+ channel.
    García-Sancho J; Herreros B
    Cell Calcium; 1983 Dec; 4(5-6):493-7. PubMed ID: 6323010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1984 Mar; 771(1):23-7. PubMed ID: 6322845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ca+-dependent efflux of K+ from erythrocytes, induced by an oxidative process].
    Giul'khandanian AV; Geokchakian GM
    Biofizika; 1991; 36(1):169-71. PubMed ID: 1854826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane.
    Garcia-Sancho J; Sanchez A; Herreros B
    Biochim Biophys Acta; 1979 Sep; 556(1):118-30. PubMed ID: 476114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of Na+ -dependent amino acid uptake by activation of the Ca2+ -dependent K+ channel in the Ehrlich ascites tumor cell.
    Valdeolmillos M; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1982 Jul; 689(1):177-9. PubMed ID: 6285975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis.
    Bisschop A; Bergsma J; Konings WN
    Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of phenazine methosulphate on K+ transport in human red cells.
    Gibson JS; Muzyamba MC; Ellory CJ
    Cell Physiol Biochem; 2003; 13(6):329-36. PubMed ID: 14631139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenazine methosulfate stimulation of ouabain-sensitive Rb+ uptake by HeLa cells: effects of respiratory inhibitors, anaerobiosis, and ascorbate.
    Ikehara T; Yamaguchi H; Hosokawa K; Kaku M; Miyamoto H
    J Cell Biochem; 1985; 28(4):273-80. PubMed ID: 4055918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the all or nothing behaviour of Ca-dependent K channels in one-step inside-out vesicles from human red cell membranes.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1986 Jul; 859(1):56-60. PubMed ID: 2424505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between propranolol and electron donors in altering the calcium ion-dependent potassium ion-permeability of the human red blood cell membrane.
    Skulskii IA; Manninen V
    Acta Physiol Scand; 1984 Mar; 120(3):329-32. PubMed ID: 6331072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate-phenazine methosulfate-dependent membrane energization in respiratory chain mutants of Escherichia coli.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1976 Sep; 72(1):195-201. PubMed ID: 791275
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of insulin on Ca(2+)-dependent hyperpolarization in erythrocytes from healthy donors and patients with type 2 diabetes mellitus accompanied by arterial hypertension.
    Kremeno SV; Sitozhevskii AV; Petrova IV; Starikova NS; Karpov RS
    Bull Exp Biol Med; 2005 Nov; 140(5):499-501. PubMed ID: 16758608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phenazine methosulfate system-induced membrane hyperpolarization in the human erythrocytes].
    Sitozhevskiĭ AV; Petrova IV; Kremeno SV; Kovalenko NS; Karpov RS
    Ross Fiziol Zh Im I M Sechenova; 2006 Apr; 92(4):461-70. PubMed ID: 16813152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The mechanism of the tetrazolium reduction and the effect of phenazinmethosulfate (author's transl)].
    Seidler E
    Acta Histochem; 1979; 65(2):209-18. PubMed ID: 231883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of RBC volume distributions by oxidants (phenazine methosulfate and tert-butyl hydroperoxide): role of Gardos channel activation.
    Lisovskaya IL; Shcherbachenko IM; Volkova RI; Tikhonov VP
    Bioelectrochemistry; 2008 Jun; 73(1):49-54. PubMed ID: 18495553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate.
    Gibson JS; Muzyamba MC
    Bioelectrochemistry; 2004 May; 62(2):147-52. PubMed ID: 15039018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane nadh dehydrogenase and Ca2+-dependent potassium transport in erythrocytes of several animal species.
    Miner C; López-Burillo S; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1983 Jan; 727(2):266-72. PubMed ID: 6404302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced turnover of chloroplast cytochrome b-559 in the presence of N-methylphenazonium methosulphate.
    Horton P; Cramer WA
    Biochim Biophys Acta; 1975 Aug; 396(2):310-9. PubMed ID: 1156582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.