These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 632305)

  • 1. Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin.
    Steenkamp DJ; McIntire W; Kenney WC
    J Biol Chem; 1978 Apr; 253(8):2818-24. PubMed ID: 632305
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel type of covalently bound coenzyme in trimethylamine dehydrogenase.
    Steenkamp DJ; Kenney WC; Singer TP
    J Biol Chem; 1978 Apr; 253(8):2812-7. PubMed ID: 632304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction of phenylhydrazine with trimethylamine dehydrogenase and with free flavins.
    Nagy J; Kenney WC; Singer TP
    J Biol Chem; 1979 Apr; 254(8):2684-8. PubMed ID: 429311
    [No Abstract]   [Full Text] [Related]  

  • 4. On the presence of a novel covalently bound oxidation-reduction cofactor, iron and labile sulfur in trimethylamine dehydrogenase.
    Steenkamp DJ; Singer TP
    Biochem Biophys Res Commun; 1976 Aug; 71(4):1289-95. PubMed ID: 971314
    [No Abstract]   [Full Text] [Related]  

  • 5. Covalently bound Flavin Coenzymes.
    Kearney EB; Kenny WC
    Horiz Biochem Biophys; 1974; 1():62-96. PubMed ID: 4619616
    [No Abstract]   [Full Text] [Related]  

  • 6. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins.
    Mewies M; Basran J; Packman LC; Hille R; Scrutton NS
    Biochemistry; 1997 Jun; 36(23):7162-8. PubMed ID: 9188716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The natural flavorprotein electron acceptor of trimethylamine dehydrogenase.
    Steenkamp DJ; Gallup M
    J Biol Chem; 1978 Jun; 253(12):4086-9. PubMed ID: 207689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suicide inhibition as a likely cause of variable specific activity in trimethylamine dehydrogenase from bacterium W3A1.
    Steenkamp DJ
    Biochem Biophys Res Commun; 1985 Oct; 132(1):352-9. PubMed ID: 4062933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and structure of a novel flavin prosthetic group associated with reduced nicotinamide adenine dinucleotide dehydrogenase from Peptostreptococcus elsdenii.
    Ghisla S; Mayhew SG
    J Biol Chem; 1973 Sep; 248(18):6568-70. PubMed ID: 4147162
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of the covalently bound flavin of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria.
    Cook RJ; Misono KS; Wagner C
    J Biol Chem; 1984 Oct; 259(20):12475-80. PubMed ID: 6490627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine.
    Mewies M; Packman LC; Mathews FS; Scrutton NS
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):267-72. PubMed ID: 8694773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of the iron-sulphur cluster and of the covalently bound coenzyme of trimethylamine dehydrogenase in catalysis.
    Steenkamp DJ; Singer TP
    Biochem J; 1978 Feb; 169(2):361-9. PubMed ID: 204297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid sequence of a cofactor peptide from trimethylamine dehydrogenase.
    Kenney WC; McIntire W; Steenkamp DJ
    FEBS Lett; 1978 Jan; 85(1):137-40. PubMed ID: 620783
    [No Abstract]   [Full Text] [Related]  

  • 14. Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli.
    Scrutton NS; Packman LC; Mathews FS; Rohlfs RJ; Hille R
    J Biol Chem; 1994 May; 269(19):13942-50. PubMed ID: 8188674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the flavocoenzyme of two homologous amine oxidases: monomeric sarcosine oxidase and N-methyltryptophan oxidase.
    Wagner MA; Khanna P; Jorns MS
    Biochemistry; 1999 Apr; 38(17):5588-95. PubMed ID: 10220347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for substrate-Induced formation of 6-hydroxyflavin mononucleotide catalyzed by C30A trimethylamine dehydrogenase.
    Lu X; Nikolic D; Mitchell DJ; van Breemen RB; Mersfelder JA; Hille R; Silverman RB
    Bioorg Med Chem Lett; 2003 Nov; 13(22):4129-32. PubMed ID: 14592522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry of covalently bound flavins.
    Singer TP; Kenney WC
    Vitam Horm; 1974; 32():1-45. PubMed ID: 4617395
    [No Abstract]   [Full Text] [Related]  

  • 18. On the importance of the N-5 position in flavin coenzymes. Properties of free and protein-bound 5-deaza analogs.
    Edmondson DE; Barman B; Tollin G
    Biochemistry; 1972 Mar; 11(7):1133-8. PubMed ID: 4622351
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for formation of oxygenated flavins.
    Yamasaki M; Yamano T
    Biochem Biophys Res Commun; 1973 Apr; 51(3):612-9. PubMed ID: 4145063
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies of reactions between flavins and quinones, mercaptans, and enolates.
    Gibian MJ; Elliott DL; Kelly C; Borge B; Kupecz K
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Sep; 27(9):1016-20. PubMed ID: 4405063
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.