BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 632316)

  • 1. Biocompatibility testing of polymers: in vitro studies with in vivo correlation.
    Rice RM; Hegyeli AF; Gourlay SJ; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Jan; 12(1):43-54. PubMed ID: 632316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility testing of polymers: in vivo implantation studies.
    Gourlay SJ; Rice RM; Hegyeli AF; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Mar; 12(2):219-32. PubMed ID: 649628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces.
    Johnson SD; Anderson JM; Marchant RE
    J Biomed Mater Res; 1992 Jul; 26(7):915-35. PubMed ID: 1607373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological characterization of Sorona polymer from corn-derived 1,3-propanediol.
    Bhatia SK; Kurian JV
    Biotechnol Lett; 2008 Apr; 30(4):619-23. PubMed ID: 18040602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic polymers--biocompatibility testing in vitro.
    Kejlová K; Labský J; Jírová D; Bendová H
    Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis.
    Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological cell changes due to chemical toxicity of a dental material: an electron microscopic study on human periodontal ligament fibroblasts and L929 cells.
    Al-Nazhan S; Spangberg L
    J Endod; 1990 Mar; 16(3):129-34. PubMed ID: 2388028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biocompatibility of polyetheretherketone and polysulfone composites.
    Wenz LM; Merritt K; Brown SA; Moet A; Steffee AD
    J Biomed Mater Res; 1990 Feb; 24(2):207-15. PubMed ID: 2329115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Concerning cell cultures for biocompatibility-testing: monitoring by DNA-fingerprinting].
    Falkner E; Frick W; Kapeller B; Eberl H; Macfelda K; Losert UM
    ALTEX; 2000; 17(3):135-7. PubMed ID: 11105195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility testing of branched and linear polyglycidol.
    Kainthan RK; Janzen J; Levin E; Devine DV; Brooks DE
    Biomacromolecules; 2006 Mar; 7(3):703-9. PubMed ID: 16529404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cultures in the biocompatibility study of synthetic materials.
    Cascone MG; Tricoli M; Cerrai P; Sbarbati Del Guerra R
    Cytotechnology; 1993; 11 Suppl 1():S137-9. PubMed ID: 7763743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed in vitro immune response to long-term intraperitoneal polymer implant in mice.
    Maurin N; Guernier C; Daty N
    J Biomed Mater Res; 1995 Dec; 29(12):1493-8. PubMed ID: 8600139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility analysis of chemomechanical caries removal material Papacárie on cultured fibroblasts and subcutaneous tissue.
    Martins MD; Fernandes KP; Motta LJ; Santos EM; Pavesi VC; Bussadori SK
    J Dent Child (Chic); 2009; 76(2):123-9. PubMed ID: 19619425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biocompatibility of various surgical drainage materials in the cytotoxicity and implantation test].
    Martin J; Nowak W; Thiel KD; Wutzler P; Kraft U
    Z Exp Chir Transplant Kunstliche Organe; 1990; 23(4):205-8. PubMed ID: 2095645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effect of oligo-hydroxyalkanoates on the growth of mouse fibroblast cell line L929.
    Sun J; Dai Z; Zhao Y; Chen GQ
    Biomaterials; 2007 Sep; 28(27):3896-903. PubMed ID: 17574664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of L-ascorbic acid to L929 fibroblast cultures: relevance to biocompatibility testing of materials for use in wound management.
    Schmidt RJ; Chung LY; Andrews AM; Turner TD
    J Biomed Mater Res; 1993 Apr; 27(4):521-30. PubMed ID: 8463353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological testing of monomers used for polymer synthesis.
    Benesová O; Sprincl L; Ulbrich K; Plainser V
    Pol J Pharmacol Pharm; 1980; 32(1):115-8. PubMed ID: 7454607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of IL-1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models.
    Miller KM; Rose-Caprara V; Anderson JM
    J Biomed Mater Res; 1989 Sep; 23(9):1007-26. PubMed ID: 2528548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.