These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 6323261)

  • 21. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica.
    Fournier P; Abbas A; Chasles M; Kudla B; Ogrydziak DM; Yaver D; Xuan JW; Peito A; Ribet AM; Feynerol C
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4912-6. PubMed ID: 8506336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.
    Chatre L; Ricchetti M
    PLoS One; 2011 Mar; 6(3):e17235. PubMed ID: 21408151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A synthetic silencer mediates SIR-dependent functions in Saccharomyces cerevisiae.
    McNally FJ; Rine J
    Mol Cell Biol; 1991 Nov; 11(11):5648-59. PubMed ID: 1922068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two autonomously replicating sequences near oli-1 gene of yeast mitochondrial DNA.
    Mabuchi T; Nishikawa S; Wakabayashi K
    J Biochem; 1984 Mar; 95(3):729-36. PubMed ID: 6373748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Random AT library: autonomously replicating sequence (ARS) activity of chemically synthesized random sequences for transformation of nonconventional yeast species.
    Fukuhara H
    FEMS Yeast Res; 2006 Dec; 6(8):1281-7. PubMed ID: 17156025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis.
    Fabiani L; Aragona M; Frontali L
    Yeast; 1990; 6(1):69-76. PubMed ID: 2180237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of autonomous replicating sequences (ars) in the genome of Epstein-Barr virus.
    Henry BE; Raab-Traub NJ; Pagano JS
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1096-100. PubMed ID: 6302669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation.
    Herreros E; García-Sáez MI; Nombela C; Sánchez M
    Mol Microbiol; 1992 Dec; 6(23):3567-74. PubMed ID: 1474898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The oli1 gene and flanking sequences in mitochondrial DNA of Saccharomyces cerevisiae: the complete nucleotide sequence of a 1.35 kilobase petite mitochondrial DNA genome covering the oli1 gene.
    Ooi BG; Nagley P
    Curr Genet; 1986; 10(10):713-23. PubMed ID: 3329032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a leuA gene and an ARS element from Mucor circinelloides.
    Roncero MI; Jepsen LP; Strøman P; van Heeswijck R
    Gene; 1989 Dec; 84(2):335-43. PubMed ID: 2693214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae.
    Shirahige K; Iwasaki T; Rashid MB; Ogasawara N; Yoshikawa H
    Mol Cell Biol; 1993 Aug; 13(8):5043-56. PubMed ID: 8336734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of DNA sequences homologous with the ARS core consensus in Saccharomyces cerevisiae.
    Bouton AH; Stirling VB; Smith MM
    Yeast; 1987 Jun; 3(2):107-15. PubMed ID: 3332964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ARS activity along the yeast mitochondrial apocytochrome b region: correlation with the location of petite genomes and consensus sequences.
    Delouya D; Bonjardim CA; Nobrega FG
    Curr Genet; 1987; 12(8):583-9. PubMed ID: 3332250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initiation at closely spaced replication origins in a yeast chromosome.
    Brewer BJ; Fangman WL
    Science; 1993 Dec; 262(5140):1728-31. PubMed ID: 8259517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae.
    Strich R; Woontner M; Scott JF
    Yeast; 1986 Sep; 2(3):169-78. PubMed ID: 3333306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae.
    Celniker SE; Sweder K; Srienc F; Bailey JE; Campbell JL
    Mol Cell Biol; 1984 Nov; 4(11):2455-66. PubMed ID: 6392851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of an autonomously replicating sequence from the fission yeast Schizosaccharomyces pombe.
    Johnston LH; Barker DG
    Mol Gen Genet; 1987 Apr; 207(1):161-4. PubMed ID: 3299000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping of the ARS-like activity and transcription initiation sites in the non-canonical yeast mitochondrial ori 6 region.
    Delouya D; Nobrega FG
    Yeast; 1991 Jan; 7(1):51-60. PubMed ID: 1708641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An autonomously replicating sequence of pSRI plasmid is effective in two yeast species, Zygosaccharomyces rouxii and Saccharomyces cerevisiae.
    Araki H; Oshima Y
    J Mol Biol; 1989 Jun; 207(4):757-69. PubMed ID: 2668540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1.
    Sohn JH; Choi ES; Kim CH; Agaphonov MO; Ter-Avanesyan MD; Rhee JS; Rhee SK
    J Bacteriol; 1996 Aug; 178(15):4420-8. PubMed ID: 8755868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.