These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6323317)

  • 1. Pneumocystis carinii: oxygen uptake, antioxidant enzymes, and susceptibility to oxygen-mediated damage.
    Pesanti EL
    Infect Immun; 1984 Apr; 44(1):7-11. PubMed ID: 6323317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide is the most toxic oxygen species for Onchocerca cervicalis microfilariae.
    Callahan HL; Crouch RK; James ER
    Parasitology; 1990 Jun; 100 Pt 3():407-15. PubMed ID: 2163503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro susceptibility of Mycobacterium leprae to oxygen-mediated damage.
    Dhople AM
    Microbios; 1996; 85(342):35-44. PubMed ID: 8935737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue.
    Weydert CJ; Cullen JJ
    Nat Protoc; 2010 Jan; 5(1):51-66. PubMed ID: 20057381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of antioxidant enzyme activities in organ-cultured rhesus monkey lenses following peroxide challenge.
    Tumminia SJ; Chambers C; Qin C; Zigler JM; Russell P
    Curr Eye Res; 1996 Aug; 15(8):845-51. PubMed ID: 8921227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals.
    Pigeolet E; Corbisier P; Houbion A; Lambert D; Michiels C; Raes M; Zachary MD; Remacle J
    Mech Ageing Dev; 1990 Feb; 51(3):283-97. PubMed ID: 2308398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential oxygen radical susceptibility of adriamycin-sensitive and -resistant MCF-7 human breast tumor cells.
    Mimnaugh EG; Dusre L; Atwell J; Myers CE
    Cancer Res; 1989 Jan; 49(1):8-15. PubMed ID: 2535695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal oxygen scavenging systems: lysis of corneal epithelial cells by superoxide anions.
    Crouch R; Ling Z; Hayden BJ
    Basic Life Sci; 1988; 49():1043-6. PubMed ID: 2854974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of Azotobacter chroococcum to oxygen: superoxide-mediated effects.
    Buchanan AG
    Can J Microbiol; 1977 Nov; 23(11):1548-53. PubMed ID: 200330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats.
    Sivan E; Lee YC; Wu YK; Reece EA
    Teratology; 1997 Dec; 56(6):343-9. PubMed ID: 9485543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The distribution of peroxide regulating enzymes in the canine eye.
    Armstrong D; Santangelo G; Connole E
    Curr Eye Res; 1981; 1(4):225-42. PubMed ID: 7333126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant enzyme activity in alveolar type II cells after exposure of rats to hyperoxia.
    Freeman BA; Mason RJ; Williams MC; Crapo JD
    Exp Lung Res; 1986; 10(2):203-22. PubMed ID: 3007082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds.
    Hassan HM; Fridovich I
    Arch Biochem Biophys; 1979 Sep; 196(2):385-95. PubMed ID: 225995
    [No Abstract]   [Full Text] [Related]  

  • 14. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study.
    Cejková J; Stípek S; Crkovská J; Ardan T
    Histol Histopathol; 2000 Oct; 15(4):1043-50. PubMed ID: 11005228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of atovaquone and diospyrin-based drugs on the cellular ATP of Pneumocystis carinii f. sp. carinii.
    Cushion MT; Collins M; Hazra B; Kaneshiro ES
    Antimicrob Agents Chemother; 2000 Mar; 44(3):713-9. PubMed ID: 10681344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain.
    Hussain S; Slikker W; Ali SF
    Int J Dev Neurosci; 1995 Dec; 13(8):811-7. PubMed ID: 8770654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation of free radical production to hyperoxia.
    Jamieson D; Chance B; Cadenas E; Boveris A
    Annu Rev Physiol; 1986; 48():703-19. PubMed ID: 3010832
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.
    Dunning S; Ur Rehman A; Tiebosch MH; Hannivoort RA; Haijer FW; Woudenberg J; van den Heuvel FA; Buist-Homan M; Faber KN; Moshage H
    Biochim Biophys Acta; 2013 Dec; 1832(12):2027-34. PubMed ID: 23871839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.