These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 6323342)
1. Effects of diamide on cyclic nucleotide levels in rat retina. Winkler BS; Fletcher RT; Chader GJ Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):461-3. PubMed ID: 6323342 [TBL] [Abstract][Full Text] [Related]
2. Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration. Farber DB; Souza DW; Chase DG; Lolley RN Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):24-31. PubMed ID: 6256308 [TBL] [Abstract][Full Text] [Related]
3. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS; Arnold MJ; Brassell MA; Sliter DR Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [TBL] [Abstract][Full Text] [Related]
4. Cyclic nucleotides in hamster retina. Buyukmihci N; Elliott HF; Giri SN Am J Vet Res; 1983 Sep; 44(9):1728-9. PubMed ID: 6625326 [TBL] [Abstract][Full Text] [Related]
5. The effect of diamide on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes. Wedner HJ Biochim Biophys Acta; 1980 Apr; 628(4):407-18. PubMed ID: 6245710 [TBL] [Abstract][Full Text] [Related]
6. Increased levels of 3',5'-cyclic adenosine monophosphate induced by cobaltous ion or 3-isobutylmethylxanthine in the incubated mouse retina: evidence concerning location and response to ions and light. Cohen AI J Neurochem; 1982 Mar; 38(3):781-96. PubMed ID: 6173465 [TBL] [Abstract][Full Text] [Related]
7. Effect of diamide and reduced glutathione on the elevated levels of cyclic AMP in rat pancreatic islets exposed to glucose, p-chloromercuribenzoate and aminophylline. Ammon HP; Heinzl S; Abdel-Hamid M; Kallenberger HM; Hagenloh I Naunyn Schmiedebergs Arch Pharmacol; 1982 Jun; 319(3):243-8. PubMed ID: 6287310 [TBL] [Abstract][Full Text] [Related]
8. Potentiation of forskolin-induced increase of cAMP by diamide and N-ethylmaleimide in rat pancreatic islets. Anazodo MI; Müller AB; Safayhi H; Ammon HP Horm Metab Res; 1990 Feb; 22(2):61-4. PubMed ID: 2157653 [TBL] [Abstract][Full Text] [Related]
9. Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Winkler BS; DeSantis N; Solomon F Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464 [TBL] [Abstract][Full Text] [Related]
10. Prolonged rhodopsin phosphorylation in light-induced retinal degeneration in rat models. Ishikawa F; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Metoki T; Ito T; Yokoi Y; Nakazawa M Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5204-11. PubMed ID: 17122104 [TBL] [Abstract][Full Text] [Related]
11. Cyclic nucleotide levels in rat embryo fibroblasts treated with tumor-promoting phorbol diester. Rochette-Egly C; Chouroulinkov I; Castagna M J Cyclic Nucleotide Res; 1979 Oct; 5(5):385-95. PubMed ID: 230210 [TBL] [Abstract][Full Text] [Related]
12. Sulfhydryl group involvement in the modulation of guanosine 3',5'-monophosphate metabolism by nitric oxide, norepinephrine, pyruvate and t-butyl hydroperoxide in minced rat lung. Braughler JM Biochem Pharmacol; 1982 Dec; 31(23):3847-51. PubMed ID: 6297501 [TBL] [Abstract][Full Text] [Related]
13. Calcium modulation of cyclic GMP synthesis in rat visual cells. Lolley RN; Racz E Vision Res; 1982; 22(12):1481-6. PubMed ID: 6305024 [TBL] [Abstract][Full Text] [Related]
14. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Orr HT; Lowry OH; Cohen AI; Ferrendelli JA Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4442-5. PubMed ID: 188039 [TBL] [Abstract][Full Text] [Related]
15. Calcium and cyclic nucleotide regulation in incubated mouse retinas. Cohen AI; Hall IA; Ferrendelli JA J Gen Physiol; 1978 May; 71(5):595-612. PubMed ID: 207816 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a role of cyclic AMP-dependent protein kinase in TSH action. McClung M; Miller J Trans Assoc Am Physicians; 1977; 90():270-80. PubMed ID: 205982 [No Abstract] [Full Text] [Related]
17. Cyclic nucleotide distribution in identified layers of suprafused rabbit retinas. Blazynski C; Cohen AI Exp Eye Res; 1984 Mar; 38(3):279-90. PubMed ID: 6202537 [TBL] [Abstract][Full Text] [Related]
18. The phototransduction cascade in the isolated chick pineal gland revisited. Holthues H; Vollrath L Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496 [TBL] [Abstract][Full Text] [Related]
19. Correlation between growth rate, cell density, and intracellular concentrations of cyclic nucleotides in chemostat cultures of mouse L1210 cells. Tovey MG; Rochette-Egly C; Castagna M J Cell Physiol; 1980 Nov; 105(2):363-7. PubMed ID: 6257733 [TBL] [Abstract][Full Text] [Related]
20. An improved protein binding assay for guanosine-3',5'-monophosphate using a binding protein from the pupa of the silkmoth, Bombyx mori L. Krause EG; Wollenberger A Acta Biol Med Ger; 1976; 35(5):543-52. PubMed ID: 185863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]