BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 6323342)

  • 1. Effects of diamide on cyclic nucleotide levels in rat retina.
    Winkler BS; Fletcher RT; Chader GJ
    Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):461-3. PubMed ID: 6323342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration.
    Farber DB; Souza DW; Chase DG; Lolley RN
    Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):24-31. PubMed ID: 6256308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic nucleotides in hamster retina.
    Buyukmihci N; Elliott HF; Giri SN
    Am J Vet Res; 1983 Sep; 44(9):1728-9. PubMed ID: 6625326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of diamide on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes.
    Wedner HJ
    Biochim Biophys Acta; 1980 Apr; 628(4):407-18. PubMed ID: 6245710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased levels of 3',5'-cyclic adenosine monophosphate induced by cobaltous ion or 3-isobutylmethylxanthine in the incubated mouse retina: evidence concerning location and response to ions and light.
    Cohen AI
    J Neurochem; 1982 Mar; 38(3):781-96. PubMed ID: 6173465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diamide and reduced glutathione on the elevated levels of cyclic AMP in rat pancreatic islets exposed to glucose, p-chloromercuribenzoate and aminophylline.
    Ammon HP; Heinzl S; Abdel-Hamid M; Kallenberger HM; Hagenloh I
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Jun; 319(3):243-8. PubMed ID: 6287310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of forskolin-induced increase of cAMP by diamide and N-ethylmaleimide in rat pancreatic islets.
    Anazodo MI; Müller AB; Safayhi H; Ammon HP
    Horm Metab Res; 1990 Feb; 22(2):61-4. PubMed ID: 2157653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged rhodopsin phosphorylation in light-induced retinal degeneration in rat models.
    Ishikawa F; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Metoki T; Ito T; Yokoi Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5204-11. PubMed ID: 17122104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotide levels in rat embryo fibroblasts treated with tumor-promoting phorbol diester.
    Rochette-Egly C; Chouroulinkov I; Castagna M
    J Cyclic Nucleotide Res; 1979 Oct; 5(5):385-95. PubMed ID: 230210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfhydryl group involvement in the modulation of guanosine 3',5'-monophosphate metabolism by nitric oxide, norepinephrine, pyruvate and t-butyl hydroperoxide in minced rat lung.
    Braughler JM
    Biochem Pharmacol; 1982 Dec; 31(23):3847-51. PubMed ID: 6297501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium modulation of cyclic GMP synthesis in rat visual cells.
    Lolley RN; Racz E
    Vision Res; 1982; 22(12):1481-6. PubMed ID: 6305024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia.
    Orr HT; Lowry OH; Cohen AI; Ferrendelli JA
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4442-5. PubMed ID: 188039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium and cyclic nucleotide regulation in incubated mouse retinas.
    Cohen AI; Hall IA; Ferrendelli JA
    J Gen Physiol; 1978 May; 71(5):595-612. PubMed ID: 207816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a role of cyclic AMP-dependent protein kinase in TSH action.
    McClung M; Miller J
    Trans Assoc Am Physicians; 1977; 90():270-80. PubMed ID: 205982
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyclic nucleotide distribution in identified layers of suprafused rabbit retinas.
    Blazynski C; Cohen AI
    Exp Eye Res; 1984 Mar; 38(3):279-90. PubMed ID: 6202537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phototransduction cascade in the isolated chick pineal gland revisited.
    Holthues H; Vollrath L
    Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between growth rate, cell density, and intracellular concentrations of cyclic nucleotides in chemostat cultures of mouse L1210 cells.
    Tovey MG; Rochette-Egly C; Castagna M
    J Cell Physiol; 1980 Nov; 105(2):363-7. PubMed ID: 6257733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved protein binding assay for guanosine-3',5'-monophosphate using a binding protein from the pupa of the silkmoth, Bombyx mori L.
    Krause EG; Wollenberger A
    Acta Biol Med Ger; 1976; 35(5):543-52. PubMed ID: 185863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.