These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 6323921)
1. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Bailey RB; Woodword A Mol Gen Genet; 1984; 193(3):507-12. PubMed ID: 6323921 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. Entian KD; Fröhlich KU J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959 [TBL] [Abstract][Full Text] [Related]
3. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Entian KD Mol Gen Genet; 1980; 178(3):633-7. PubMed ID: 6993859 [TBL] [Abstract][Full Text] [Related]
4. Pleiotropic mutations regulating resistance to glucose repression in Saccharomyces carlsbergensis are allelic to the structural gene for hexokinase B. Michels CA; Hahnenberger KM; Sylvestre Y J Bacteriol; 1983 Jan; 153(1):574-8. PubMed ID: 6848488 [TBL] [Abstract][Full Text] [Related]
5. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis. Entian KD Mol Gen Genet; 1981; 184(2):278-82. PubMed ID: 7035837 [TBL] [Abstract][Full Text] [Related]
6. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Ma H; Botstein D Mol Cell Biol; 1986 Nov; 6(11):4046-52. PubMed ID: 3540605 [TBL] [Abstract][Full Text] [Related]
7. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Zimmermann FK; Scheel I Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390 [TBL] [Abstract][Full Text] [Related]
8. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. Schüller HJ; Entian KD J Bacteriol; 1991 Mar; 173(6):2045-52. PubMed ID: 2002006 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Matsumoto K; Toh-e A; Oshima Y Mol Cell Biol; 1981 Feb; 1(2):83-93. PubMed ID: 6765598 [TBL] [Abstract][Full Text] [Related]
10. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. Entian KD; Zimmermann FK J Bacteriol; 1982 Sep; 151(3):1123-8. PubMed ID: 7050076 [TBL] [Abstract][Full Text] [Related]
11. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Matsumoto K; Yoshimatsu T; Oshima Y J Bacteriol; 1983 Mar; 153(3):1405-14. PubMed ID: 6337998 [TBL] [Abstract][Full Text] [Related]
12. A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake. Entian KD Mol Gen Genet; 1980; 179(1):169-75. PubMed ID: 7005623 [TBL] [Abstract][Full Text] [Related]
13. Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Entian KD; Hilberg F; Opitz H; Mecke D Mol Cell Biol; 1985 Nov; 5(11):3035-40. PubMed ID: 3018496 [TBL] [Abstract][Full Text] [Related]
14. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Ma H; Bloom LM; Walsh CT; Botstein D Mol Cell Biol; 1989 Dec; 9(12):5643-9. PubMed ID: 2685572 [TBL] [Abstract][Full Text] [Related]
15. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
16. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. Lodi T; Donnini C; Ferrero I J Gen Microbiol; 1991 May; 137(5):1039-44. PubMed ID: 1865178 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state. Schamhart DH; Ten Berge AM; Van De Poll KW J Bacteriol; 1975 Mar; 121(3):747-52. PubMed ID: 163813 [TBL] [Abstract][Full Text] [Related]
18. Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts. Entian KD; Kopetzki E; Fröhlich KU; Mecke D Mol Gen Genet; 1984; 198(2):50-4. PubMed ID: 6394965 [TBL] [Abstract][Full Text] [Related]
19. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. Gamo FJ; Lafuente MJ; Gancedo C J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563 [TBL] [Abstract][Full Text] [Related]