These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6324040)

  • 1. Potassium propionate causes preferential loss of 'bound' acetylcholine in frog muscle.
    Molenaar PC; Polak RL
    Neurosci Lett; 1983 Dec; 43(2-3):209-13. PubMed ID: 6324040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of anions on bound acetylcholine in frog sartorius muscle.
    Ceccarelli B; Molenaar PC; Oen BS; Polak RL; Torri-Tarelli F; van Kempen GT
    J Physiol; 1989 Jan; 408():233-49. PubMed ID: 2789283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free and bound acetylcholine in frog muscle.
    Miledi R; Molenaar PC; Polak RL
    J Physiol; 1982 Dec; 333():189-99. PubMed ID: 6985073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of potassium propionate on free and bound acetylcholine in frog muscle.
    Molenaar PC; Polak RL
    Brain Res; 1989 Jan; 477(1-2):109-17. PubMed ID: 2784707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surplus acetylcholine and acetylcholine release in the rat diaphragm.
    Molenaar PC; Oen BS; Polak RL; van der Laaken AL
    J Physiol; 1987 Apr; 385():147-67. PubMed ID: 3498823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lanthanum ions on acetylcholine in frog muscle.
    Miledi R; Molenaar PC; Polak RL
    J Physiol; 1980 Dec; 309():199-214. PubMed ID: 6265624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential release of [3H]acetylcholine from the rat phrenic nerve-hemidiaphragm preparation by electrical nerve stimulation and by high potassium.
    Wessler I; Steinlein O
    Neuroscience; 1987 Jul; 22(1):289-99. PubMed ID: 2442663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological and chemical determination of acetylcholine release at the frog neuromuscular junction.
    Miledi R; Molenaar PC; Polak RL
    J Physiol; 1983 Jan; 334():245-54. PubMed ID: 6602876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chloride ions on giant miniature end-plate potentials at the frog neuromuscular junction.
    Molenaar PC; Oen BS; Polak RL
    J Physiol; 1987 Feb; 383():143-52. PubMed ID: 3498819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased.
    Van der Kloot W; Molgó J; Cameron R; Colasante C
    J Physiol; 2002 Jun; 541(Pt 2):385-93. PubMed ID: 12042346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings.
    Redman RS; Silinsky EM
    J Physiol; 1994 May; 477(Pt 1):117-27. PubMed ID: 8071878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction.
    Naves LA; Van der Kloot W
    J Physiol; 2001 May; 532(Pt 3):637-47. PubMed ID: 11313435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage and release of acetylcholine in rat cortical synaptosomes: effects of D,L-2-(4-phenylpiperidino)cyclohexanol (AH5183).
    Suszkiw JB; Toth G
    Brain Res; 1986 Oct; 386(1-2):371-8. PubMed ID: 3022885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of an inhibitor of the synaptic vesicle acetylcholine transport system on quantal neurotransmitter release: an electrophysiological study.
    Lupa MT
    Brain Res; 1988 Sep; 461(1):118-26. PubMed ID: 3265645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preferential release of newly synthesized transmitter by a sympathetic ganglion.
    Collier B
    J Physiol; 1969 Nov; 205(2):341-52. PubMed ID: 4311459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Routes of acetylcholine leakage from cytosolic and vesicular compartments of rat motor nerve terminals.
    Smith DO
    Neurosci Lett; 1992 Jan; 135(1):5-9. PubMed ID: 1542437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.
    Rodrigues HA; Fonseca Mde C; Camargo WL; Lima PM; Martinelli PM; Naves LA; Prado VF; Prado MA; Guatimosim C
    PLoS One; 2013; 8(11):e78342. PubMed ID: 24260111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chloride channel blocker reduces acetylcholine uptake into synaptic vesicles at the frog neuromuscular junction.
    Van der Kloot W
    Brain Res; 2003 Jan; 961(2):287-9. PubMed ID: 12531496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.