BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 6324251)

  • 1. Only solid red blood cell ghosts transport K+, and Na+ against concentration gradients: hollow intact ghosts with K+-Na+ activated ATPase do not.
    Ling GN; Tucker M
    Physiol Chem Phys Med NMR; 1983; 15(4):311-7. PubMed ID: 6324251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the phlorizin site on Na, K-ATPase in red cell membranes.
    Nakagawa A; Nakao M
    J Biochem; 1977 May; 81(5):1511-5. PubMed ID: 142763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal erythrocyte Na, K-ATPase activity in a northeastern Thai population.
    Tosukhowong P; Chotikasatit C; Tungsanga K; Sriboonlue P; Prasongwattana V; Pansin P; Sitprija V
    Southeast Asian J Trop Med Public Health; 1992 Sep; 23(3):526-30. PubMed ID: 1336901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts.
    Simons TJ
    J Physiol; 1979 Mar; 288():481-507. PubMed ID: 469731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two different types of ATP-dependent anion coupled Na transport are mediated by the human red blood cell and Na/K pump.
    Marin R; Hoffman JF
    Prog Clin Biol Res; 1988; 268A():539-44. PubMed ID: 2843899
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantitative relationships between the concentration of proteins and the concentration of K+ and Na+ in red cell ghosts.
    Ling GN; Zodda D; Sellers M
    Physiol Chem Phys Med NMR; 1984; 16(5):381-92. PubMed ID: 6531403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension].
    de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A
    Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulators of red cell Na/K pump rates.
    Hoffman JF; Kennedy BG; Lunn G
    Prog Clin Biol Res; 1981; 56():5-11. PubMed ID: 6276886
    [No Abstract]   [Full Text] [Related]  

  • 9. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Na+ and K+ ion transport across the human erythrocyte membrane during the formation of nystatin channels under in-vitro conditions: the characteristics and an analysis of the processes].
    Borisov IuA; Soboleva OIu; Suglobova ED; Fedorovich EE
    Tsitologiia; 1994; 36(5):427-36. PubMed ID: 7809978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Incorporation of Na,K-ATPase into human erythrocyte membranes using liposomes].
    Stel'makh LN; Rozhmanova OM; Lishko VK
    Biokhimiia; 1984 Mar; 49(3):460-3. PubMed ID: 6326865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explaining on request a correlation between membrane Na,K-ATPase and K+ content in erythrocytes and other findings in the preceding paper.
    Ling GN
    Physiol Chem Phys Med NMR; 1998; 30(1):89-97. PubMed ID: 9807237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension.
    Kedzierska K; Bober J; Ciechanowski K; Gołembiewska E; Kwiatkowska E; Noceń I; Dołegowska B; Dutkiewicz G; Chlubek D
    Biol Trace Elem Res; 2005 Oct; 107(1):21-32. PubMed ID: 16170219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Clin Invest; 1979 Sep; 64(3):834-41. PubMed ID: 224078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the determination of Na-K-ATPase in red blood cell membranes.
    Eder K; Reichlmayr-Lais AM; Kirchgessner M
    J Trace Elem Electrolytes Health Dis; 1989 Sep; 3(3):151-9. PubMed ID: 2562499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of the in vivo administration of beta-methyldigoxin on the Na, K-ATPase measured in different tissues of guinea pigs].
    Rodriguez MA; Padrón-Nieves M; Pérez-González M; Lamanna V
    Acta Cient Venez; 1994; 45(2):112-9. PubMed ID: 8731295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of the activating effect of detergents and chelating agents on the Na, K-ATPase activity of erythrocyte ghosts].
    Kazennov AM; Maslova MN; Shalabodov AD
    Biokhimiia; 1986 Feb; 51(2):224-9. PubMed ID: 3008861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of age on the activity of Mg-Na-K-ATPase, as well as on the K and Na concentration in human erythrocytes].
    Platt D; Haas H
    Z Gerontol; 1979; 12(1):73-88. PubMed ID: 219631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Alcohol-related high blood pressure, and erythrocyte Na+/K(+)-ATPase activity, sodium and potassium concentrations].
    Tsuritani I; Teraoka K; Miyagoshi M; Honda R; Ishizaki M; Yamada Y
    Rinsho Byori; 1993 Dec; 41(12):1353-7. PubMed ID: 8295347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.