BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6325221)

  • 1. Identification of an Indian muntjac DNA fragment preferentially hybridizing to the X-chromosome.
    Vasilikaki-Baker H; Nishioka Y
    Exp Cell Res; 1984 May; 152(1):275-9. PubMed ID: 6325221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: their presence in the Chinese muntjac.
    Yu LC; Lowensteiner D; Wong EF; Sawada I; Mazrimas J; Schmid C
    Chromosoma; 1986; 93(6):521-8. PubMed ID: 3015505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species.
    Scherthan H
    Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal differentiation of metaphase chromosomes of Indian muntjac as studied by restriction enzyme digestion, in situ hybridization with cloned DNA probes and distamycin A plus DAPI fluorescence staining.
    Ueda T; Irie S; Kato Y
    Chromosoma; 1987; 95(4):251-7. PubMed ID: 3040343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory.
    Scherthan H; Arnason U; Lima-de-Faria A
    Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of X-chromosome specific satellite DNA of Muntiacus muntjak vaginalis.
    Bogenberger J; Schnell H; Fittler F
    Chromosoma; 1982; 87(1):9-20. PubMed ID: 6297861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the repetitive telomeric sequence (TTAGGG)n in two muntjac species and implications for their karyotypic evolution.
    Scherthan H
    Cytogenet Cell Genet; 1990; 53(2-3):115-7. PubMed ID: 2369836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome.
    Li YC; Cheng YM; Hsieh LJ; Ryder OA; Yang F; Liao SJ; Hsiao KM; Tsai FJ; Tsai CH; Lin CC
    Chromosoma; 2005 May; 114(1):28-38. PubMed ID: 15827746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs.
    Lin CC; Sasi R; Fan YS; Chen ZQ
    Chromosoma; 1991 Oct; 101(1):19-24. PubMed ID: 1769270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of muntjac DNA.
    Schmidtke J; Brennecke H; Schmid M; Neitzel H; Sperling K
    Chromosoma; 1981; 84(2):187-93. PubMed ID: 7327043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA cloning and hybridization in deer species supporting the chromosome field theory.
    Lima-de-Faria A; Arnason U; Widegren B; Isaksson M; Essen-Möller J; Jaworska H
    Biosystems; 1986; 19(3):185-212. PubMed ID: 3022841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis).
    Yang F; Müller S; Just R; Ferguson-Smith MA; Wienberg J
    Genomics; 1997 Feb; 39(3):396-401. PubMed ID: 9119378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of heterochromatin by restriction endonuclease treatment and distamycin A/DAPI staining of Indian muntjac (Muntiacus muntjak) chromosomes.
    Babu A; Verma RS
    Cytogenet Cell Genet; 1986; 41(2):96-100. PubMed ID: 2420537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization and chromosomal distribution of a novel repetitive DNA component from Muntiacus muntjak vaginalis with a repeat length of more than 40 kb.
    Benedum UM; Neitzel H; Sperling K; Bogenberger J; Fittler F
    Chromosoma; 1986; 94(4):267-72. PubMed ID: 3024931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments.
    Frönicke L; Scherthan H
    Chromosome Res; 1997 Jun; 5(4):254-61. PubMed ID: 9244453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular method for detecting the presence of the human Y chromosome.
    Friesen H; Nishioka Y
    Am J Med Genet; 1984 Jun; 18(2):289-94. PubMed ID: 6087662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype.
    Li YC; Lee C; Sanoudou D; Hseu TH; Li SY; Lin CC
    Chromosome Res; 2000; 8(5):363-73. PubMed ID: 10997777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome rearrangement between the Indian muntjac and Chinese muntjac is accompanied by a delection of middle repetitive DNA.
    Johnston FP; Church RB; Lin CC
    Can J Biochem; 1982 May; 60(5):497-506. PubMed ID: 7104826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative gene mapping in the species Muntiacus muntjac.
    Levy HP; Schultz RA; Cohen MM
    Cytogenet Cell Genet; 1992; 61(4):276-81. PubMed ID: 1486805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.