These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6325388)

  • 1. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis.
    Maloney PC; Ambudkar SV; Thomas J; Schiller L
    J Bacteriol; 1984 Apr; 158(1):238-45. PubMed ID: 6325388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1986 Aug; 261(22):10079-86. PubMed ID: 3090028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of phosphate:hexose 6-phosphate antiport in membrane vesicles of Streptococcus lactis.
    Ambudkar SV; Maloney PC
    J Biol Chem; 1984 Oct; 259(20):12576-85. PubMed ID: 6436237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion exchange in bacteria. Variable stoichiometry of phosphate: sugar 6-phosphate antiport.
    Maloney PC; Ambudkar SV
    Ann N Y Acad Sci; 1985; 456():245-7. PubMed ID: 3937469
    [No Abstract]   [Full Text] [Related]  

  • 5. Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: implications for the mechanism of sugar phosphate transport by bacteria.
    Ambudkar SV; Sonna LA; Maloney PC
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):280-4. PubMed ID: 3001731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of phosphate-linked antiport from Streptococcus lactis.
    Ambudkar SV; Maloney PC
    Biochem Biophys Res Commun; 1985 Jun; 129(2):568-75. PubMed ID: 2990460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J; Chassy BM
    J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ; Murphy GP; Stephens CM
    J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of sugar phosphate transport systems of Escherichia coli.
    Ambudkar SV; Larson TJ; Maloney PC
    J Biol Chem; 1986 Jul; 261(20):9083-6. PubMed ID: 3522583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH.
    Poolman B; Nijssen RM; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ; Reizer J; Saier MH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer.
    Ambudkar SV; Anantharam V; Maloney PC
    J Biol Chem; 1990 Jul; 265(21):12287-92. PubMed ID: 2197272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis.
    Andersson U; Levander F; Rådström P
    J Biol Chem; 2001 Nov; 276(46):42707-13. PubMed ID: 11553642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts.
    Tetlow IJ; Bowsher CG; Emes MJ
    Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):717-23. PubMed ID: 8920972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular hexose-6-phosphate:phosphohydrolase from Streptococcus lactis: purification, properties, and function.
    Thompson J; Chassy BM
    J Bacteriol; 1983 Oct; 156(1):70-80. PubMed ID: 6311807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger.
    Driessen AJ; Poolman B; Kiewiet R; Konings W
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6093-7. PubMed ID: 2819865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.
    Taguchi Y; Saburi W; Imai R; Mori H
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.