These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 63256)

  • 1. Removal of blood group determinants from bovine erythrocyte membranes. 3. Action of proteolytic enzymes on intact cells.
    Hines HC; Trowbridge CL; Zink GL
    Anim Blood Groups Biochem Genet; 1976; 7(2):91-9. PubMed ID: 63256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of enzymes on the blood factors associated with the FV system of bovine erythrocytes.
    Sellei J
    J Immunogenet; 1978 Aug; 5(4):233-42. PubMed ID: 731067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of blood group determinants from bovine erythrocyte membranes. I. Action of proteolytic enzymes on ghosts.
    Zink GL; Hines HC
    Anim Blood Groups Biochem Genet; 1974; 5(2):85-93. PubMed ID: 4139912
    [No Abstract]   [Full Text] [Related]  

  • 4. Rh0(D) activity of red blood cells and stroma treated with proteolytic enzymes.
    Yokoi T; Iwasa M; Sagisaka K
    Tohoku J Exp Med; 1984 May; 143(1):99-105. PubMed ID: 6431638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further characterization of erythrocyte p80 and the membrane protein defect of In(Lu) Lu(a-b-) erythrocytes.
    Telen MJ; Rogers I; Letarte M
    Blood; 1987 Nov; 70(5):1475-81. PubMed ID: 2444289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some characteristics of the residue obtained after pronase treatment of sheep erythrocyte membranes. II. Carbohydrate patterns.
    Marinari UM; Averame MM; Casu A; Nanni G
    Ital J Biochem; 1977; 26(3):232-44. PubMed ID: 914503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of blood group determinants from bovine erythrocyte membranes. 2. Degradation of ghosts by butanol and pyridine.
    Zink GL; Hines HC
    Anim Blood Groups Biochem Genet; 1975; 6(4):235-43. PubMed ID: 55086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine erythrocyte membrane composition: association with the FV and other glycoprotein systems.
    Hines HC; Salfner B; Uhlenbruck G; Schmid DO
    Vox Sang; 1972; 22(6):488-500. PubMed ID: 4559135
    [No Abstract]   [Full Text] [Related]  

  • 9. Partial characterisation of the human erythrocyte antigen Pta.
    Herron R; Smith GA; Young D; Smith DS
    Vox Sang; 1989; 56(2):112-6. PubMed ID: 2750091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the agglutinogens of red cells developed with proteolytic enzymes and neuraminidase.
    Sagisaka K; Takahashi K
    Tohoku J Exp Med; 1976 Oct; 120(2):169-75. PubMed ID: 982434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and histochemical characterization of the cattle V red blood cell antigen with monoclonal antibody IVA-41.
    Antalíková J; Simon M; Jankovicová J; Horovská L; Fábryová K; Hluchy S
    Hybridoma (Larchmt); 2007 Aug; 26(4):255-8. PubMed ID: 17725388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtypic linearity in the bovine B blood group system.
    Auditore KJ; Morris BG; Suzuki Y; Stormont C
    Vox Sang; 1979; 36(4):236-9. PubMed ID: 88814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of proteolytic enzymes and neuraminidase on the I and i erythrocyte antigen sites. Quantitative and thermodynamic studies.
    Doînel C; Ropars C; Salmon C
    Immunology; 1978 Apr; 34(4):653-62. PubMed ID: 82532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation of human albumin with proteolytic enzymes and its antigenicity with special reference to human-specificity.
    Sagisaka K; Sugiyama Y; Tsugawa N
    Tohoku J Exp Med; 1978 Jun; 125(2):115-20. PubMed ID: 694918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of spectrin in membrane fusion: induction of fusion in human erythrocyte ghosts by proteolytic enzymes and its inhibition by antispectrin antibody.
    Lalazar A; Loyter A
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):318-22. PubMed ID: 218196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structure of human erythrocyte membrane and the biochemical basis for its genetic differentiation].
    Drzeniek Z
    Postepy Hig Med Dosw; 1977; 31(1):33-59. PubMed ID: 866275
    [No Abstract]   [Full Text] [Related]  

  • 17. Aging of the erythrocyte. XII. Protein composition of the membrane.
    Bartosz G; Soszynski M; Wasilewski A
    Mech Ageing Dev; 1982 May; 19(1):45-52. PubMed ID: 7109705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The occurrence of Thomsen-Friedenreich receptors in bovine erythrocytes of various FV genotypes.
    Sellei J
    J Immunogenet; 1981 Aug; 8(4):263-9. PubMed ID: 7024419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some characteristics of the residue obtained after pronase treatment of sheep erythrocyte membranes. I. Protein and phospholipid patterns.
    Nanni G; Pala V; Cinollo G; Marinari UM; Casu A
    Ital J Biochem; 1977; 26(3):215-31. PubMed ID: 914502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane self-digestion during erythrocyte storage.
    Gaczyńska M; Bartosz G; Rosin J
    Cytobios; 1989; 57(229):87-92. PubMed ID: 2673667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.