BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6325724)

  • 1. Interaction of germanium (Ge) with biosilicification in the freshwater sponge Ephydatia mülleri: evidence of localized membrane domains in the silicalemma.
    Simpson TL; Garrone R; Mazzorana M
    J Ultrastruct Res; 1983 Nov; 85(2):159-74. PubMed ID: 6325724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of germanium on the morphology of silica deposition in a freshwater sponge.
    Simpson TL; Refolo LM; Kaby ME
    J Morphol; 1979 Mar; 159(3):343-353. PubMed ID: 30200679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Germanium (Ge) on the silica spicules of the marine sponge Suberites domuncula: Transformation of spicule type.
    Simpson TL; Gil M; Connes R; Diaz JP; Paris J
    J Morphol; 1985 Jan; 183(1):117-128. PubMed ID: 29969865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some aspects of silica deposition in lithistid demosponge desmas.
    Pisera A
    Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica deposition in Demosponges: spiculogenesis in Crambe crambe.
    Uriz MJ; Turon X; Becerro MA
    Cell Tissue Res; 2000 Aug; 301(2):299-309. PubMed ID: 10955725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge.
    Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P
    J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni.
    Wang X; Wiens M; Schröder HC; Jochum KP; Schlossmacher U; Götz H; Duschner H; Müller WE
    J Exp Biol; 2011 Jun; 214(Pt 12):2047-56. PubMed ID: 21613521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni.
    Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M
    J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials.
    Müller WE; Wang X; Cui FZ; Jochum KP; Tremel W; Bill J; Schröder HC; Natalio F; Schlossmacher U; Wiens M
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):397-413. PubMed ID: 19430775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis.
    Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE
    J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications.
    Shimizu K; Morse DE
    Methods Enzymol; 2018; 605():429-455. PubMed ID: 29909834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation.
    Schlossmacher U; Wiens M; Schröder HC; Wang X; Jochum KP; Müller WE
    FEBS J; 2011 Apr; 278(7):1145-55. PubMed ID: 21284806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis.
    Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F
    J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies.
    Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC
    Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling biosilicification at subcellular scales.
    Javaheri N; Cronemberger CM; Kaandorp JA
    Prog Mol Subcell Biol; 2013; 54():117-41. PubMed ID: 24420712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of germanic acid.
    Safonova TA; Annenkov VV; Chebykin EP; Danilovtseva EN; Likhoshway YV; Grachev MA
    Biochemistry (Mosc); 2007 Nov; 72(11):1261-9. PubMed ID: 18205610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrastructural study of silica deposition in the freshwater sponge Spongilla lacustris.
    Simpson TL; Vaccaro CA
    J Ultrastruct Res; 1974 Jun; 47(3):296-309. PubMed ID: 4365443
    [No Abstract]   [Full Text] [Related]  

  • 20. Biologically formed mesoporous amorphous silica.
    Jensen M; Keding R; Höche T; Yue Y
    J Am Chem Soc; 2009 Feb; 131(7):2717-21. PubMed ID: 19199622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.