These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6326045)

  • 1. The sensitivity of apical Na+ permeability in frog skin to hypertonic stress.
    Zeiske W; Van Driessche W
    Pflugers Arch; 1984 Feb; 400(2):130-9. PubMed ID: 6326045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270.
    Abramcheck FJ; Van Driessche W; Helman SI
    J Gen Physiol; 1985 Apr; 85(4):555-82. PubMed ID: 2409219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of Na+ transport across frog skin by Tl+: effects on turnover, area density and saturation kinetics of apical Na+ channels.
    Zeiske W; Van Driessche W
    Pflugers Arch; 1986 Aug; 407(2):145-52. PubMed ID: 2428005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stimulation of Na+ uptake in frog skin by uranyl ions.
    Zeiski W
    Biochim Biophys Acta; 1978 May; 509(2):218-29. PubMed ID: 26398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological analysis of sodium-transport in the colon of the frog (Rana esculenta). Modulation of apical membrane properties by antidiuretic hormone.
    Krattenmacher R; Clauss W
    Pflugers Arch; 1988 Jun; 411(6):606-12. PubMed ID: 2457866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa.
    Rick R; Dörge A; Sesselmann E
    Pflugers Arch; 1988 Mar; 411(3):243-51. PubMed ID: 2454448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-noise analysis of Na absorption in the embryonic coprodeum: stimulation by aldosterone and thyroxine.
    Clauss W; Hoffmann B; Krattenmacher R; Van Driessche W
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R1100-8. PubMed ID: 7694510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin.
    Tang J; Abramcheck FJ; Van Driessche W; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sodium on amiloride- and triamterene-induced current fluctuations in isolated frog skin.
    Hoshiko T; Van Driessche W
    J Gen Physiol; 1986 Mar; 87(3):425-42. PubMed ID: 2420917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors.
    Rasgado-Flores H; Krishna Mandava V; Siman H; Van Driessche W; Pilewski JM; Randell SH; Bridges RJ
    Am J Physiol Cell Physiol; 2013 Dec; 305(11):C1114-22. PubMed ID: 23986197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of TPA and insulin on Na+ transport across frog skin.
    Civan MM; Peterson-Yantorno K; George K; O'Brien TG
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin E2 enhances the sodium conductance of exocrine glands in isolated frog skin (Rana esculenta).
    Nielsen R
    J Membr Biol; 1990 Jan; 113(1):31-8. PubMed ID: 2304070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media.
    Rick R; Roloff C; Dörge A; Beck FX; Thurau K
    J Membr Biol; 1984; 78(2):129-45. PubMed ID: 6325700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex response of epithelial cells to inhibition of Na+ transport by amiloride.
    Fisher RS; Lockard JW
    Am J Physiol; 1988 Feb; 254(2 Pt 1):C297-303. PubMed ID: 2450465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small transepithelial osmotic gradients affect apical sodium permeability in frog skin.
    Brodin B; Nielsen R
    Pflugers Arch; 1993 Jun; 423(5-6):411-7. PubMed ID: 8394566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apical Na+ permeability of frog skin during serosal Cl- replacement.
    Leibowich S; DeLong J; Civan MM
    J Membr Biol; 1988 May; 102(2):121-30. PubMed ID: 2458472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.