These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 6326045)

  • 21. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion transport across leech integument. I. Electrogenic Na+ transport and current fluctuation analysis of the apical Na+ channel.
    Weber WM; Dannenmaier B; Clauss W
    J Comp Physiol B; 1993; 163(2):153-9. PubMed ID: 8391551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens.
    Drewnowska K; Biber TU
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F424-31. PubMed ID: 3876034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for apical sodium channels in frog lung epithelial cells.
    Fischer H; Van Driessche W; Clauss W
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C764-71. PubMed ID: 2539725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cu2+ reveals different binding sites of amiloride and CDPC on the apical Na channel of frog skin.
    Flonta ML; Beir-Simaels JD; Mesotten D; Van Driessche W
    Biochim Biophys Acta; 1998 Mar; 1370(1):169-74. PubMed ID: 9518595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues.
    Ehrenfeld J; Cragoe EJ; Harvey BJ
    Pflugers Arch; 1987 Jun; 409(1-2):200-7. PubMed ID: 3039454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
    Ehrenfeld J; Garcia-Romeu F; Harvey BJ
    J Physiol; 1985 Feb; 359():331-55. PubMed ID: 2582114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Na transport stimulation by novobiocin: intracellular ion concentrations and membrane potential.
    Rick R; Beck FX; Dörge A; Sesselmann E; Thurau K
    Pflugers Arch; 1988 May; 411(5):505-13. PubMed ID: 3260372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca-sensitive sodium absorption in the colon of Xenopus laevis.
    Krattenmacher R; Voigt R; Clauss W
    J Comp Physiol B; 1990; 160(2):161-5. PubMed ID: 2167905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noise analysis of cAMP-stimulated Na current in frog colon.
    Krattenmacher R; Fischer H; van Driessche W; Clauss W
    Pflugers Arch; 1988 Oct; 412(6):568-73. PubMed ID: 2850532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the putative Ca2+-receptor agonist Gd3+ on the active transepithelial Na+ transport in frog skin.
    Friis S; Nielsen R
    J Membr Biol; 2001 Dec; 184(3):291-7. PubMed ID: 11891554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta).
    Nielsen R
    J Membr Biol; 1997 Sep; 159(1):61-9. PubMed ID: 9309211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autoregulation of apical sodium entry in the colon of the frog (Rana esculenta).
    Krattenmacher R; Clauss W
    Comp Biochem Physiol A Comp Physiol; 1989; 93(3):593-6. PubMed ID: 2569375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.
    Fuchs W; Larsen EH; Lindemann B
    J Physiol; 1977 May; 267(1):137-66. PubMed ID: 301566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trifluoperazine stimulated sodium transport through the apical surface of isolated frog skin.
    Bjerregaard HF; Nielsen R
    Acta Physiol Scand; 1988 Sep; 134(1):43-52. PubMed ID: 3266417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+-sensitive, spontaneously fluctuating, cation channels in the apical membrane of the adult frog skin epithelium.
    Van Driessche W; Zeiske W
    Pflugers Arch; 1985 Oct; 405(3):250-9. PubMed ID: 2415917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase.
    Harvey B; Lacoste I; Ehrenfeld J
    J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apical sodium entry in split frog skin: current-voltage relationship.
    DeLong J; Civan MM
    J Membr Biol; 1984; 82(1):25-40. PubMed ID: 6334163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diacylglycerols stimulate short-circuit current across frog skin by increasing apical Na+ permeability.
    Civan MM; Peterson-Yantorno K; O'Brien TG
    J Membr Biol; 1987; 97(3):193-204. PubMed ID: 3498045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interference of a short-chain phospholipid with ion transport pathways in frog skin.
    Unmack MA; Frederiksen O; Willumsen NJ
    Pflugers Arch; 1997 Jul; 434(3):234-41. PubMed ID: 9178620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.