BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 6326429)

  • 1. [Effect of heating beef at 55 degrees C on the growth of Clostridium perfringens and Staphylococcus aureus].
    Labadie J; Boucheteil M; Laroche M
    Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Jan; 178(5-6):542-50. PubMed ID: 6326429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of enterotoxigenic Staphylococcus aureus in povi masima, a traditional Pacific island food.
    Wong TL; Whyte RJ; Graham CG; Saunders D; Schumacher J; Hudson JA
    J Appl Microbiol; 2004; 97(6):1185-91. PubMed ID: 15546409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium perfringens growth from spore inocula in sous-vide processed pork-based Mexican entrée.
    Miguel-Garcia DY; Juneja VK; Valenzuela-Melendrez M; Díaz-Cinco ME; Thippareddi H; Aida Peña-Ramos E
    J Food Sci; 2009; 74(4):M172-6. PubMed ID: 19490335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll.
    Byrne B; Dunne G; Bolton DJ
    Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the growth of Clostridium perfringens during the cooling of bulk meat.
    Le Marc Y; Plowman J; Aldus CF; Munoz-Cuevas M; Baranyi J; Peck MW
    Int J Food Microbiol; 2008 Nov; 128(1):41-50. PubMed ID: 18768233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of heating and cooling rates on spore germination and growth of Clostridium perfringens in media and in roast beef.
    Shigehisa T; Nakagami T; Taji S
    Nihon Juigaku Zasshi; 1985 Apr; 47(2):259-67. PubMed ID: 2861305
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of two methods of cooking and cooling on Clostridium welchii and other bacteria in meat.
    Sutton RG; Kendall M; Hobbs BC
    J Hyg (Lond); 1972 Sep; 70(3):415-24. PubMed ID: 4341997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.
    Amézquita A; Weller CL; Wang L; Thippareddi H; Burson DE
    Int J Food Microbiol; 2005 May; 101(2):123-44. PubMed ID: 15862875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacterial quality of red meat and offal in Casablanca (Morocco).
    Cohen N; Ennaji H; Hassar M; Karib H
    Mol Nutr Food Res; 2006 May; 50(6):557-62. PubMed ID: 16676376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.
    Duan Z; Hansen TH; Hansen TB; Dalgaard P; Knøchel S
    Int J Food Microbiol; 2016 Aug; 230():45-57. PubMed ID: 27127839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L
    J Food Sci; 2016 Jul; 81(7):M1754-65. PubMed ID: 27259065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth/no growth boundary of Clostridium perfringens from spores in cooked meat: A logistic analysis.
    Huang L; Li C; Hwang CA
    Int J Food Microbiol; 2018 Feb; 266():257-266. PubMed ID: 29274481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed Clostridium perfringens growth from a spore inocula by sodium lactate in sous-vide chicken products.
    Juneja VK
    Food Microbiol; 2006 Apr; 23(2):105-11. PubMed ID: 16942993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Public health importance of Clostridium perfringens.
    Genigeorgis C
    J Am Vet Med Assoc; 1975 Nov; 167(9):821-7. PubMed ID: 241737
    [No Abstract]   [Full Text] [Related]  

  • 15. Growth of Clostridium perfringens in sous vide cooked ground beef with added grape seed extract.
    Cosansu S; Juneja VK
    Meat Sci; 2018 Sep; 143():252-256. PubMed ID: 29807297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased inactivation of ozone-treated Clostridium perfringens vegetative cells and spores on fabricated beef surfaces using mild heat.
    Novak JS; Yuan JT
    J Food Prot; 2004 Feb; 67(2):342-6. PubMed ID: 14968967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance.
    Grant KA; Kenyon S; Nwafor I; Plowman J; Ohai C; Halford-Maw R; Peck MW; McLauchlin J
    Foodborne Pathog Dis; 2008 Oct; 5(5):629-39. PubMed ID: 18681798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings.
    Wijnker JJ; Koop G; Lipman LJ
    Food Microbiol; 2006 Oct; 23(7):657-62. PubMed ID: 16943065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sporulation of Clostridium perfringens type A in vacuum-sealed meats.
    Dework FM
    Appl Microbiol; 1972 Nov; 24(5):834-6. PubMed ID: 4344962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.