BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6326441)

  • 21. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes.
    Tamburini PP; MacFarquhar S; Schenkman JB
    Biochem Biophys Res Commun; 1986 Jan; 134(2):519-26. PubMed ID: 3080992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase.
    Iyanagi T; Watanabe S; Anan KF
    Biochemistry; 1984 Mar; 23(7):1418-25. PubMed ID: 6326802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of halothane on hepatic microsomal electron transfer.
    Berman MC; Ivanetich KM; Kench JE
    Biochem J; 1975 May; 148(2):179-86. PubMed ID: 239706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of microsomal electron transport components from control, phenobarbital- and 3-methylcholanthrene-treated mice. II. Improved resolution and quantitation of major components in ammonium sulfate fractions from total liver microsomes.
    Mull RH; Schgaguler M; Mönig H; Voigt T; Flemming K
    Biochim Biophys Acta; 1977 Dec; 462(3):671-88. PubMed ID: 202308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverse relationship between cytochrome P-450 phosphorylation and complexation with cytochrome b5.
    Jansson I; Epstein PM; Bains S; Schenkman JB
    Arch Biochem Biophys; 1987 Dec; 259(2):441-8. PubMed ID: 3426238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of halothane oxidation by hepatic microsomes and purified cytochromes P-450 using a gas chromatographic mass spectrometric assay.
    Gruenke LD; Konopka K; Koop DR; Waskell LA
    J Pharmacol Exp Ther; 1988 Aug; 246(2):454-9. PubMed ID: 3404442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of thiols to microsomal cytochrome P-450.
    Nastainczyk W; Ruf HH; Ullrich V
    Chem Biol Interact; 1976 Aug; 14(3-4):251-63. PubMed ID: 182393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility and clusterlike organization of liposomal cytochrome P-450 LM2: saturation transfer EPR studies.
    Schwarz D; Pirrwitz J; Coon MJ; Ruckpaul K
    Acta Biol Med Ger; 1982; 41(5):425-30. PubMed ID: 6291289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic studies on reduction of cytochromes P-450 and b5 by dithionite.
    Davydov DR; Karyakin AV; Binas B; Kurganov BI; Archakov AI
    Eur J Biochem; 1985 Jul; 150(1):155-9. PubMed ID: 4018075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of reduction of purified liver microsomal cytochrome P-450 in the reconstituted enzyme system studied by stopped flow spectrophotometry.
    Vatsis KP; Oprian DD; Coon MJ
    Acta Biol Med Ger; 1979; 38(2-3):459-73. PubMed ID: 42251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox properties of microsomal reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5.
    Iyanagi T
    Biochemistry; 1977 Jun; 16(12):2725-30. PubMed ID: 19038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of hydroperoxide-dependent reactions with participation of cytochrome P-450.
    Metelitza DI; Akhrem AA; Erjomin AN; Kissel MA; Usanov SA
    Acta Biol Med Ger; 1979; 38(2-3):511-8. PubMed ID: 517012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P-450.
    Jansson I; Schenkman JB
    Drug Metab Dispos; 1987; 15(3):344-8. PubMed ID: 2886309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of oxygenated cytochrome P-450 and of cytochrome b5 in hepatic microsomal drug oxidations.
    Baron J; Hildebrandt AG; Peterson JA; Estabrook RW
    Drug Metab Dispos; 1973; 1(1):129-38. PubMed ID: 4149374
    [No Abstract]   [Full Text] [Related]  

  • 36. Surface enhanced resonance Raman study of phenobarbital-induced rabbit liver cytochrome P-450 LM2.
    Hildebrandt P; Greinert R; Stier A; Stockburger M; Taniguchi H
    FEBS Lett; 1988 Jan; 227(1):76-80. PubMed ID: 2828114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different requirement for cytochrome b5 in NADPH-supported O-deethylation of p-nitrophenetole catalyzed by two types of microsomal cytochrome P-450.
    Kuwahara S; Omura T
    Biochem Biophys Res Commun; 1980 Oct; 96(4):1562-8. PubMed ID: 7447942
    [No Abstract]   [Full Text] [Related]  

  • 38. Cytochrome b5 as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles.
    Ingelman-Sundberg M; Johansson I
    Biochem Biophys Res Commun; 1980 Nov; 97(2):582-6. PubMed ID: 6781498
    [No Abstract]   [Full Text] [Related]  

  • 39. Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization.
    Greinert R; Finch SA; Stier A
    Xenobiotica; 1982 Nov; 12(11):717-26. PubMed ID: 7168192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotational diffusion of cytochrome P-450 in the microsomal membrane-evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy.
    Schwarz D; Pirrwitz J; Ruckpaul K
    Arch Biochem Biophys; 1982 Jun; 216(1):322-8. PubMed ID: 6285833
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.