BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6327354)

  • 1. Regional cyclic AMP systems during secondary ischemia in gerbils: influence of anesthetic agents.
    Christie-Pope BC; Palmer GC; Poulakos L; Medina MA; Callahan AS; Palmer SJ
    Exp Neurol; 1984 Jun; 84(3):494-511. PubMed ID: 6327354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylate cyclase and histopathological changes in the gerbil brain following prolonged unilateral ischemia and recirculation.
    Christie-Pope BC; Palmer GC; Chronister RB; Callahan AS
    Stroke; 1985; 16(4):710-7. PubMed ID: 4040671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of GTP-modulation of adenylate cyclase in gerbil cerebral cortex after bilateral ischemia.
    Taylor MD; Palmer GC; Callahan AS
    J Neurosci Res; 1984; 12(4):615-21. PubMed ID: 6096573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective action by methylprednisolone, allopurinol and indomethacin against stroke-induced damage to adenylate cyclase in gerbil cerebral cortex.
    Taylor MD; Palmer GC; Callahan AS
    Stroke; 1984; 15(2):329-35. PubMed ID: 6701940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional profiles of steady-state levels of cyclic nucleotides, cyclic AMP phosphodiesterase, and guanylate cyclase activities during late stages of unilateral ischemia in gerbil forebrain.
    Palmer GC; Christie-Pope BC; Medina MA; Colombo PM; Palmer SJ
    Metab Brain Dis; 1988 Sep; 3(3):161-77. PubMed ID: 2906108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degeneration of CA1 neurons in hippocampus after ischemia in Mongolian gerbils: cyclic AMP-systems.
    Karnushina I; Suzuki R; Padgett W; Daly JW
    Brain Res; 1983 May; 268(1):87-94. PubMed ID: 6305459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nimodipine on cerebral metabolism during ischemia and recirculation in the mongolian gerbil.
    Heffez DS; Passonneau JV
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):523-8. PubMed ID: 2997244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of ischemic-induced damage to Na+, K+-ATPase in gerbil forebrain. Modification by therapeutic agents.
    Palmer GC; Palmer SJ; Christie-Pope BC; Callahan AS; Taylor MD; Eddy LJ
    Neuropharmacology; 1985 Jun; 24(6):509-16. PubMed ID: 2991803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of naloxone and morphine on cerebral ischemia in gerbils.
    Christie-Pope BC; Palmer GC; Palmer SJ
    J Neurosci Res; 1986; 16(4):683-97. PubMed ID: 2948023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers.
    Christie-Pope BC; Palmer GC
    Metab Brain Dis; 1986 Dec; 1(4):249-61. PubMed ID: 3508245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotides in stroke and related cerebrovascular disorders.
    Palmer GC
    Life Sci; 1985 May; 36(21):1995-2006. PubMed ID: 2860549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further probes into the molecular sites of damage to cerebral adenylate cyclase following postischemic reperfusion.
    Palmer GC; Jones DJ; Palmer SJ; Christie-Pope BC; Poulakos L
    Neurochem Pathol; 1986 Aug; 5(1):1-23. PubMed ID: 3104840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcineurin inhibitor, FK506, prevents reduction in the binding capacity of cyclic AMP-dependent protein kinase in ischemic gerbil brain.
    Tanaka K; Fukuuchi Y; Nozaki H; Nagata E; Kondo T; Koyama S; Dembo T
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):412-20. PubMed ID: 9143223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenylate cyclase activity and motor behavior following cerebral ischemia in the unanesthetized gerbil.
    Chandler MJ; Hornbrook KR; Carney JM
    Life Sci; 1985 Sep; 37(10):937-43. PubMed ID: 4040998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of policosanol on cerebral ischemia in Mongolian gerbils.
    Molina V; Arruzazabala ML; Carbajal D; Valdés S; Noa M; Más R; Fraga V; Menéndez R
    Braz J Med Biol Res; 1999 Oct; 32(10):1269-76. PubMed ID: 10510265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of catecholamine-sensitive adenylate cyclase in gerbil cerebral cortex after bilateral ischemia.
    Taylor MD; Palmer GC; Callahan AS
    Exp Neurol; 1982 Jun; 76(3):495-507. PubMed ID: 7084370
    [No Abstract]   [Full Text] [Related]  

  • 17. Mapping of second messenger and rolipram receptors in mammalian brain.
    Araki T; Kato H; Kogure K
    Brain Res Bull; 1992 Jun; 28(6):843-8. PubMed ID: 1322228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of rat brain muscarinic M4 receptors coupled to cyclic AMP using the selective antagonist muscarinic toxin 3.
    Olianas MC; Adem A; Karlsson E; Onali P
    Eur J Pharmacol; 1998 Sep; 357(2-3):235-42. PubMed ID: 9797042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid receptors and inhibition of dopamine-sensitive adenylate cyclase in slices of rat brain regions receiving a dense dopaminergic input.
    Heijna MH; Bakker JM; Hogenboom F; Mulder AH; Schoffelmeer AN
    Eur J Pharmacol; 1992 Dec; 229(2-3):197-202. PubMed ID: 1337044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate.
    Arch JR; Newsholme EA
    Biochem J; 1976 Sep; 158(3):603-22. PubMed ID: 186042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.