These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6327392)

  • 1. The effect of thiol reagents on GABA transport in rat brain synaptosomes.
    Troeger MB; Wilson DF; Erecińska M
    FEBS Lett; 1984 Jun; 171(2):303-8. PubMed ID: 6327392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dithiols and monothiols are linked with GABA transport in membrane vesicles of rat brain synaptosomes.
    Robillard GT; Schaaf JM; Teelken AW
    FEBS Lett; 1987 Nov; 224(2):391-5. PubMed ID: 3691796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitric oxide donors on Ca2+-dependent [14C]GABA release from brain synaptosomes: the role of SH-groups.
    Nedvetsky PI; Konev SV; Rakovich AA; Petrenko SV; Mongin AA
    Biochemistry (Mosc); 2000 Sep; 65(9):1027-35. PubMed ID: 11042494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response of the NADH oxidase of plasma membranes of rat liver and hepatoma and HeLa cells to thiol reagents.
    Morré DJ; Morré DM
    J Bioenerg Biomembr; 1995 Feb; 27(1):137-44. PubMed ID: 7629045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulphydryl groups and GABA uptake in slices of rat cerebral cortex.
    Phillips DI; Kelly JS
    J Neurochem; 1975 Sep; 25(3):359-61. PubMed ID: 169324
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of the amine-polyamine-choline transporter superfamily 'consensus amphipathic region' as the target for inactivation of the Escherichia coli GABA transporter GabP by thiol modification reagents. Role of Cys-300 in restoring thiol sensitivity to Gabp lacking Cys.
    Hu LA; King SC
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):649-55. PubMed ID: 10215604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thiol reagents and ionizing radiation on the permeability of erythrocyte membrane for spin-labeled non-electrolytes.
    Gwoździński K; Bartosz G; Leyko W
    Radiat Environ Biophys; 1983; 22(1):53-9. PubMed ID: 6225140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of sulfhydryl reagents on potassium-stimulated calcium uptake by rat brain synaptosomes.
    Eason KE; Aronstam RS
    Res Commun Chem Pathol Pharmacol; 1984 Jun; 44(3):503-6. PubMed ID: 6235555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes.
    Hori R; Maegawa H; Okano T; Takano M; Inui K
    J Pharmacol Exp Ther; 1987 Jun; 241(3):1010-6. PubMed ID: 3037062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sulfhydryl reagents on Na+-Ca2+ exchange in rat brain microsomal membranes.
    Orlický J; Ruscák M; Juhász O; Zachar J
    Gen Physiol Biophys; 1987 Apr; 6(2):155-62. PubMed ID: 3653680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group-selective reagent modification of the sodium- and chloride-coupled glycine transporter under native and reconstituted conditions.
    Alcántara R; López-Corcuera B; Aragón C
    Biochim Biophys Acta; 1991 Aug; 1067(1):64-70. PubMed ID: 1651114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thiol reacting reagents on the structure of the Escherichia coli ribosome.
    Suryanarayana P
    Indian J Biochem Biophys; 1978 Oct; 15(5):384-7. PubMed ID: 376434
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of thiol reagents on phosphoinositide hydrolysis in rat brain synaptoneurosomes.
    Vignes M; Guiramand J; Sassetti I; Récasens M
    Eur J Neurosci; 1993 Apr; 5(4):327-34. PubMed ID: 8261113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid peroxidation-induced inhibition of gamma-aminobutyric acid uptake in rat brain synaptosomes: protection by glucocorticoids.
    Braughler JM
    J Neurochem; 1985 Apr; 44(4):1282-8. PubMed ID: 3882888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy.
    Hoogland G; Spierenburg HA; van Veelen CW; van Rijen PC; van Huffelen AC; de Graan PN
    J Neurosci Res; 2004 Jun; 76(6):881-90. PubMed ID: 15160399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putative cocaine receptor in striatum is a glycoprotein with active thiol function.
    Cao CJ; Young MM; Wong JB; Mahran LG; Eldefrawi ME
    Membr Biochem; 1989; 8(4):207-20. PubMed ID: 2562128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sulphydryl groups in efflux of taurine and GABA from cerebral cortical cells.
    Upton EL; Law RO
    Adv Exp Med Biol; 1996; 403():409-16. PubMed ID: 8915378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct types of SH-groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes.
    Blumrich M; Petzinger E
    Biochim Biophys Acta; 1993 Jul; 1149(2):278-84. PubMed ID: 8391841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple effects of sulphydryl reagents on sugar transport by rat soleus muscle.
    Kozka IJ; Gould MK
    Biochim Biophys Acta; 1982 Jul; 689(2):210-8. PubMed ID: 6288096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Net uptake of gamma-aminobutyric acid by a high affinity synaptosomal transport system.
    Ryan LD; Roskoski R
    J Pharmacol Exp Ther; 1977 Feb; 200(2):285-91. PubMed ID: 839440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.