These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6328319)

  • 1. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability.
    Tatchell K; Chaleff DT; DeFeo-Jones D; Scolnick EM
    Nature; 1984 Jun 7-13; 309(5968):523-7. PubMed ID: 6328319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional homology of mammalian and yeast RAS genes.
    Kataoka T; Powers S; Cameron S; Fasano O; Goldfarb M; Broach J; Wigler M
    Cell; 1985 Jan; 40(1):19-26. PubMed ID: 2981628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae.
    DeFeo-Jones D; Scolnick EM; Koller R; Dhar R
    Nature; 1983 Dec 15-21; 306(5944):707-9. PubMed ID: 6318116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation.
    Friesen H; Lunz R; Doyle S; Segall J
    Genes Dev; 1994 Sep; 8(18):2162-75. PubMed ID: 7958886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae.
    Briza P; Breitenbach M; Ellinger A; Segall J
    Genes Dev; 1990 Oct; 4(10):1775-89. PubMed ID: 2249774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying sporulation genes, visualizing synaptonemal complexes, and large-scale spore and spore wall purification.
    Esposito RE; Dresser M; Breitenbach M
    Methods Enzymol; 1991; 194():110-31. PubMed ID: 2005782
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential regulation of STA genes of Saccharomyces cerevisiae.
    Pugh TA; Clancy MJ
    Mol Gen Genet; 1990 Jun; 222(1):87-96. PubMed ID: 2233684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation.
    Tatchell K; Robinson LC; Breitenbach M
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3785-9. PubMed ID: 3889915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The methionine initiator tRNA genes of yeast.
    Cigan AM; Donahue TF
    Gene; 1986; 41(2-3):343-8. PubMed ID: 3011608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae.
    Madaule P; Axel R; Myers AM
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):779-83. PubMed ID: 3543936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae.
    Robinson LC; Gibbs JB; Marshall MS; Sigal IS; Tatchell K
    Science; 1987 Mar; 235(4793):1218-21. PubMed ID: 3547648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae.
    Burns N; Grimwade B; Ross-Macdonald PB; Choi EY; Finberg K; Roeder GS; Snyder M
    Genes Dev; 1994 May; 8(9):1087-105. PubMed ID: 7926789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RCS1, a gene involved in controlling cell size in Saccharomyces cerevisiae.
    Gil R; Zueco J; Sentandreu R; Herrero E
    Yeast; 1991 Jan; 7(1):1-14. PubMed ID: 2021081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of intron splicing in the function of the MATa1 gene of Saccharomyces cerevisiae.
    Ner SS; Smith M
    Mol Cell Biol; 1989 Nov; 9(11):4613-20. PubMed ID: 2574822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae.
    Naumovski L; Friedberg EC
    Proc Natl Acad Sci U S A; 1983 Aug; 80(15):4818-21. PubMed ID: 6308653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four linked genes participate in controlling sporulation efficiency in budding yeast.
    Ben-Ari G; Zenvirth D; Sherman A; David L; Klutstein M; Lavi U; Hillel J; Simchen G
    PLoS Genet; 2006 Nov; 2(11):e195. PubMed ID: 17112318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system.
    Taxis C; Keller P; Kavagiou Z; Jensen LJ; Colombelli J; Bork P; Stelzer EH; Knop M
    J Cell Biol; 2005 Nov; 171(4):627-40. PubMed ID: 16286509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Control of the cell division cycle and sporulation in Saccharomyces cerevisiae by the cyclic AMP system].
    Jacquet M; Camonis J
    Biochimie; 1985 Jan; 67(1):35-43. PubMed ID: 2986730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.
    Tomitaka M; Taguchi H; Matsuoka M; Morimura S; Kida K; Akamatsu T
    J Biosci Bioeng; 2014 Jan; 117(1):65-70. PubMed ID: 23849804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring meiosis and sporulation in Saccharomyces cerevisiae.
    Kassir Y; Simchen G
    Methods Enzymol; 1991; 194():94-110. PubMed ID: 2005827
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.