BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 6328521)

  • 1. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease.
    Siman R; Baudry M; Lynch G
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3572-6. PubMed ID: 6328521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glutamate receptor binding by the cytoskeletal protein fodrin.
    Siman R; Baudry M; Lynch G
    Nature; 1985 Jan 17-23; 313(5999):225-8. PubMed ID: 2982099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three distinct phases of fodrin proteolysis induced in postischemic hippocampus. Involvement of calpain and unidentified protease.
    Yokota M; Saido TC; Tani E; Kawashima S; Suzuki K
    Stroke; 1995 Oct; 26(10):1901-7. PubMed ID: 7570746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarities between the Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton and alpha-fodrin.
    Bartelt DC; Carlin RK; Scheele GA; Cohen WD
    Arch Biochem Biophys; 1984 Apr; 230(1):13-20. PubMed ID: 6324680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pet toxin from enteroaggregative Escherichia coli produces cellular damage associated with fodrin disruption.
    Villaseca JM; Navarro-García F; Mendoza-Hernández G; Nataro JP; Cravioto A; Eslava C
    Infect Immun; 2000 Oct; 68(10):5920-7. PubMed ID: 10992503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thiol protease inhibitors on fodrin degradation during hypoxia in cultured myocytes.
    Iizuka K; Kawaguchi H; Kitabatake A
    J Mol Cell Cardiol; 1993 Sep; 25(9):1101-9. PubMed ID: 8283473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of brain spectrin (fodrin).
    Burns NR; Ohanian V; Gratzer WB
    FEBS Lett; 1983 Mar; 153(1):165-8. PubMed ID: 6825856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons.
    Nixon RA
    J Neurosci; 1986 May; 6(5):1264-71. PubMed ID: 3012012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrin, fodrin and protein 4.1-like proteins in differentiating rat germ cells.
    De Cesaris P; Filippini A; Stefanini M; Ziparo E
    Differentiation; 1989 Sep; 41(3):216-22. PubMed ID: 2612769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.
    Harris AS; Morrow JS
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3009-13. PubMed ID: 2326262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of purinergic receptor in alpha fodrin degradation in Par C5 cells.
    Hwang SM; Li J; Koo NY; Choi SY; Lee SJ; Oh SB; Castro R; Kim JS; Park K
    J Dent Res; 2009 Oct; 88(10):927-32. PubMed ID: 19783801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No evidence for calpain I involvement in fodrin rearrangements linked to regulated secretion.
    Perrin D; Söling HD
    FEBS Lett; 1992 Oct; 311(3):302-4. PubMed ID: 1397332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of phospholipase D activity by fodrin. An active role for the cytoskeleton.
    Lukowski S; Lecomte MC; Mira JP; Marin P; Gautero H; Russo-Marie F; Geny B
    J Biol Chem; 1996 Sep; 271(39):24164-71. PubMed ID: 8798657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ischemia-induced fodrin breakdown by a novel phenylpyrimidine derivative NS-7: an implication for its neuroprotective action in rats with middle cerebral artery occlusion.
    Takagaki Y; Itoh Y; Aoki Y; Ukai Y; Yoshikuni Y; Kimura K
    J Neurochem; 1997 Jun; 68(6):2507-13. PubMed ID: 9166746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin.
    Glenney JR; Glenney P; Osborn M; Weber K
    Cell; 1982 Apr; 28(4):843-54. PubMed ID: 7201352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of calpain in postmortem proteolysis in the rat brain.
    Sorimachi Y; Harada K; Yoshida K
    Forensic Sci Int; 1996 Aug; 81(2-3):165-74. PubMed ID: 8837492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of fodrin-binding proteins in the structure of the neuronal postsynaptic density and regulation by phosphorylation.
    LeVine H; Sahyoun NE
    Biochem Biophys Res Commun; 1986 Jul; 138(1):59-65. PubMed ID: 2943277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species differences in fodrin proteolysis in the ischemic brain.
    Kitagawa K; Matsumoto M; Saido TC; Ohtsuki T; Kuwabara K; Yagita Y; Mabuchi T; Yanagihara T; Hori M
    J Neurosci Res; 1999 Mar; 55(5):643-9. PubMed ID: 10082086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective release of calpain produced alphalI-spectrin (alpha-fodrin) breakdown products by acute neuronal cell death.
    Dutta S; Chiu YC; Probert AW; Wang KK
    Biol Chem; 2002 May; 383(5):785-91. PubMed ID: 12108543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of calpain on hypoxic myocyte injury].
    Iizuka K
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):112-9. PubMed ID: 8119651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.