BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6328562)

  • 1. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat.
    Maxwell DJ; Bannatyne BA; Fyffe RE; Brown AG
    Q J Exp Physiol; 1984 Apr; 69(2):381-92. PubMed ID: 6328562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat's spinal cord.
    Brown AG; Fyffe RE; Noble R
    J Physiol; 1980 Oct; 307():385-400. PubMed ID: 7205669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structure of primary afferent axon terminals of slowly adapting cutaneous receptors in the cat.
    Bannatyne BA; Maxwell DJ; Fyffe RE; Brown AG
    Q J Exp Physiol; 1984 Jul; 69(3):547-57. PubMed ID: 6473695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Egger MD
    Brain Res; 1984 Jun; 302(1):135-50. PubMed ID: 6203612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.
    Maxwell DJ; Koerber HR; Bannatyne BA
    Neuroscience; 1985 Oct; 16(2):375-94. PubMed ID: 4080161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intra-axonal horseradish peroxidase in the cat and monkey.
    Ralston HJ; Light AR; Ralston DD; Perl ER
    J Neurophysiol; 1984 Apr; 51(4):777-92. PubMed ID: 6201596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1985 Feb; 232(2):229-40. PubMed ID: 3973092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord.
    Watson AH
    J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopic observations of terminals of functionally identified afferent fibers in cat spinal cord.
    Egger MD; Freeman NC; Malamed S; Masarachia P; Proshansky E
    Brain Res; 1981 Feb; 207(1):157-62. PubMed ID: 6258726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of muscle spindle afferent terminations in lamina VI of the cat spinal cord.
    Maxwell DJ; Bannatyne BA
    Brain Res; 1983 Dec; 288(1-2):297-301. PubMed ID: 6198026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative ultrastructure of slowly adapting lingual afferent terminals in the principal and oral nuclei in the cat.
    Zhang LF; Moritani M; Honma S; Yoshida A; Shigenaga Y
    Synapse; 2001 Aug; 41(2):96-111. PubMed ID: 11400176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic ultrastructure of functionally and morphologically characterized neurons of the superficial spinal dorsal horn of cat.
    Rèthelyi M; Light AR; Perl ER
    J Neurosci; 1989 Jun; 9(6):1846-63. PubMed ID: 2723753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn.
    Glazer EJ; Basbaum AI
    Neuroscience; 1983 Oct; 10(2):357-76. PubMed ID: 6355893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis.
    Kalia M; Richter D
    J Comp Neurol; 1985 Nov; 241(4):521-35. PubMed ID: 4078045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow-adapting responses of the Pacinian corpuscles of cat planta.
    Sakada S; Sasaki T; Tazaki M
    Brain Res; 1985 Apr; 332(1):194-9. PubMed ID: 3995265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers.
    Réthelyi M; Light AR; Perl ER
    J Comp Neurol; 1982 Jun; 207(4):381-93. PubMed ID: 6288776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):574-94. PubMed ID: 2464625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles).
    Halata Z
    J Anat; 1977 Dec; 124(Pt 3):717-29. PubMed ID: 604339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.