BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6329025)

  • 41. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation.
    Liang B; Petty HR
    J Cell Physiol; 1992 Jul; 152(1):145-56. PubMed ID: 1618916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nongenomic effect of thyroid hormone on free-radical production in human polymorphonuclear leukocytes.
    Mezosi E; Szabo J; Nagy EV; Borbely A; Varga E; Paragh G; Varga Z
    J Endocrinol; 2005 Apr; 185(1):121-9. PubMed ID: 15817833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium channel antagonist induced inhibition of superoxide production in human neutrophils. Mechanisms independent of antagonizing calcium influx.
    Irita K; Fujita I; Takeshige K; Minakami S; Yoshitake J
    Biochem Pharmacol; 1986 Oct; 35(20):3465-71. PubMed ID: 3021172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C.
    Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T
    Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Smear layer removal by EGTA.
    Calt S; Serper A
    J Endod; 2000 Aug; 26(8):459-61. PubMed ID: 11199779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron-EDTA stimulated reduction of indicine N-oxide by the hepatic microsomal fraction, isolated hepatocytes, and the intact rat.
    Powis G; Svingen BA; Degraw C
    Biochem Pharmacol; 1982 Feb; 31(3):293-9. PubMed ID: 6280724
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme.
    Guthrie LA; McPhail LC; Henson PM; Johnston RB
    J Exp Med; 1984 Dec; 160(6):1656-71. PubMed ID: 6096475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fungal gliotoxin targets the onset of superoxide-generating NADPH oxidase of human neutrophils.
    Yoshida LS; Abe S; Tsunawaki S
    Biochem Biophys Res Commun; 2000 Feb; 268(3):716-23. PubMed ID: 10679271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A; Zancani M; Macrí F
    Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper chelates of antirheumatic and anti-inflammatory agents: their superoxide dismutase-like activity and stability.
    Roberts NA; Robinson PA
    Br J Rheumatol; 1985 May; 24(2):128-36. PubMed ID: 3922461
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Induction of apoptosis in Neuro-2A cells by Zn2+ chelating.
    Sakabe I; Paul S; Dansithong W; Shinozawa T
    Cell Struct Funct; 1998 Apr; 23(2):95-9. PubMed ID: 9669037
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steady-state kinetics of autoxidation of NAD(P)H initiated by hydroperoxyl radical, the acid form of superoxide anion radical.
    Fujimori K; Nakajima H
    Biochem Biophys Res Commun; 1991 Apr; 176(2):846-51. PubMed ID: 1851006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger.
    Siegel D; Gustafson DL; Dehn DL; Han JY; Boonchoong P; Berliner LJ; Ross D
    Mol Pharmacol; 2004 May; 65(5):1238-47. PubMed ID: 15102952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of superoxide ions in the oxidation of NADH by melanins.
    Crippa PR; Mazzini A
    Physiol Chem Phys Med NMR; 1983; 15(1):51-6. PubMed ID: 6316379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vanadate and molybdate stimulate the oxidation of NADH by superoxide radical.
    Darr D; Fridovich I
    Arch Biochem Biophys; 1984 Aug; 232(2):562-5. PubMed ID: 6087731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes.
    McPhail LC; DeChatelet LR; Shirley PS
    J Clin Invest; 1976 Oct; 58(4):774-80. PubMed ID: 965484
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.