BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6329380)

  • 1. The beta-adrenergic receptor adenylate cyclase complex of Rauscher murine erythroleukemia cells and its response to erythropoietin-induced differentiation.
    Sytkowski AJ; Kessler CJ
    Blood; 1984 Jul; 64(1):84-90. PubMed ID: 6329380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythropoietin-induced differentiation of Rauscher erythroleukemia cells.
    Sytkowski AJ; Perrine SP; Bicknell KA; Kessler CJ
    Prog Clin Biol Res; 1983; 134():335-43. PubMed ID: 6320216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythroid differentiation of clonal Rauscher erythroleukemia cells in response to erythropoietin or dimethyl sulfoxide.
    Sytkowski AJ; Salvado AJ; Smith GM; McIntyre CJ; deBoth NJ
    Science; 1980 Oct; 210(4465):74-6. PubMed ID: 6932101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of skeletal muscle beta-adrenergic receptors coupled to adenylate cyclase.
    Reddy NB; Engel WK
    Biochim Biophys Acta; 1979 Jul; 585(3):343-59. PubMed ID: 226166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of beta-adrenergic receptor linked to adenylate cyclase in a human cancer cell line (COLO 16).
    Martin TJ; Nahorski SR; Hunt NH; Dawborn JK; Loomes RS; Underwood CE
    Clin Sci Mol Med; 1978 Jul; 55(1):23-9. PubMed ID: 27327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythropoietin activates the receptor in both Rauscher and Friend murine erythroleukemia cells.
    Chern Y; Spangler R; Choi HS; Sytkowski AJ
    J Biol Chem; 1991 Feb; 266(4):2009-12. PubMed ID: 1846607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol.
    Mukherjee C; Caron MG; Coverstone M; Lefkowitz RJ
    J Biol Chem; 1975 Jul; 250(13):4869-76. PubMed ID: 238972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in G protein pattern and in G protein-dependent signaling during erythropoietin- and dimethylsulfoxide-induced differentiation of murine erythroleukemia cells.
    Kesselring F; Spicher K; Porzig H
    Blood; 1994 Dec; 84(12):4088-98. PubMed ID: 7994027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biochemistry of erythropoietin: an approach to its mode of action.
    Sytkowski AJ; McIntyre CJ; Perrine SP; Salvado AJ
    Exp Hematol; 1980; 8 Suppl 8():52-64. PubMed ID: 6962071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethyl sulfoxide.
    Broudy VC; Lin N; Egrie J; de Haƫn C; Weiss T; Papayannopoulou T; Adamson JW
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6513-7. PubMed ID: 2842774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenylate cyclase coupled beta adrenergic receptors of Rauscher erythroleukemia cells.
    Sytkowski AJ; Kessler CJ; D'Albis JN
    Biochem Biophys Res Commun; 1981 Aug; 101(4):1221-7. PubMed ID: 6171280
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of the beta-adrenergic adenylate cyclase system of developing rabbit bone-marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biochem J; 1983 Feb; 210(2):559-66. PubMed ID: 6860310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of beta-adrenergic blockade on papillary muscle function and the beta-adrenergic receptor system in noninfarcted myocardium in compensated ischemic left ventricular dysfunction.
    Warner AL; Bellah KL; Raya TE; Roeske WR; Goldman S
    Circulation; 1992 Nov; 86(5):1584-95. PubMed ID: 1330362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The resolution of dopamine and beta 1- and beta 2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex.
    Dolphin A; Hamont M; Bockaert J
    Brain Res; 1979 Dec; 179(2):305-17. PubMed ID: 41616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoproterenol-induced desensitization of adenylate cyclase in human astrocytoma cells. Relation of loss of hormonal responsiveness and decrement in beta-adrenergic receptors.
    Su YF; Harden TK; Perkins JP
    J Biol Chem; 1979 Jan; 254(1):38-41. PubMed ID: 214444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional alteration of the beta-adrenergic receptor during desensitization of mammalian adenylate cyclase by beta-agonists.
    Kassis S; Fishman PH
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6686-90. PubMed ID: 6093112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion.
    Schramm M; Orly J; Eimerl S; Korner M
    Nature; 1977 Jul; 268(5618):310-3. PubMed ID: 196212
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification and characterization of a differentiation-specific antigen on normal and malignant murine erythroid cells.
    Bacon ER; Sytkowski AJ
    Blood; 1987 Jan; 69(1):103-8. PubMed ID: 3466654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. beta-adrenergic receptor coupled-adenylate cyclase of human fat cell ghosts.
    Kather H; Vogt B; Simon B
    Klin Wochenschr; 1977 Jul; 55(13):625-8. PubMed ID: 197299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid changes in rat pineal beta-adrenergic receptor: alterations in l-(3H)alprenolol binding and adenylate cyclase.
    Kebabian JW; Zatz M; Romero JA; Axelrod J
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3735-9. PubMed ID: 1059161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.