These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6329417)

  • 1. delta 9-Tetrahydrocannabinol-induced changes in beta-adrenergic receptor binding in mouse cerebral cortex.
    Hillard CJ; Bloom AS
    Brain Res; 1982 Mar; 235(2):370-7. PubMed ID: 6329417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors.
    Kathmann M; Flau K; Redmer A; Tränkle C; Schlicker E
    Naunyn Schmiedebergs Arch Pharmacol; 2006 Feb; 372(5):354-61. PubMed ID: 16489449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chronic delta-9-THC treatment on cardiac beta-adrenoceptors in rats.
    Evans EB; Seifen E; Kennedy RH; Kafiluddi R; Paule MG; Scallet AC; Ali SF; Slikker W
    Pharmacol Biochem Behav; 1987 Oct; 28(2):171-4. PubMed ID: 2825217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on variable-interval performance in rats of delta 9-tetrahydrocannabinol and cannabidiol, separately and in combination.
    Zuardi AW; Karniol IG
    Braz J Med Biol Res; 1983 Jul; 16(2):141-6. PubMed ID: 6317104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of marihuana cannabinoids on seizure activity in cobalt-epileptic rats.
    Colasanti BK; Lindamood C; Craig CR
    Pharmacol Biochem Behav; 1982 Apr; 16(4):573-8. PubMed ID: 6280204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of chronic Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) use on cerebral glucose metabolism in multiple sclerosis: a pilot study.
    Workman CD; Kindred JH; Boles Ponto LL; Kamholz J; Rudroff T
    Appl Physiol Nutr Metab; 2020 Apr; 45(4):450-452. PubMed ID: 31841355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of morphine withdrawal on cerebral beta 1- and beta 2-adrenergic receptors.
    Kuriyama K; Muramatsu M; Ohkuma S; Tamura J; Ping ZP
    J Neurosci Res; 1981; 6(6):749-55. PubMed ID: 6278157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study.
    Oviedo A; Glowa J; Herkenham M
    Brain Res; 1993 Jul; 616(1-2):293-302. PubMed ID: 8395305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3H-delta 9-Tetrahydrocannabinol, 3H-cannabinol and 3H-cannabidiol: penetration and regional distribution in rat brain.
    Alozie SO; Martin BR; Harris LS; Dewey WL
    Pharmacol Biochem Behav; 1980 Feb; 12(2):217-21. PubMed ID: 6246544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of delta-9-tetrahydrocannabinol and cannabidiol on p50 of the oxygen haemoglobin dissociation curve.
    James TR; Watson CT; Pepple DJ
    Fitoterapia; 2020 Jun; 143():104539. PubMed ID: 32147492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of two putatively selective radioligands for labeling central nervous system beta-adrenergic receptors: inadequacy of [3H]dihydroalprenolol.
    Riva MA; Creese I
    Mol Pharmacol; 1989 Jul; 36(1):201-10. PubMed ID: 2546050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reevaluation of the regulation of beta-adrenergic receptor binding by desipramine treatment.
    Riva MA; Creese I
    Mol Pharmacol; 1989 Jul; 36(1):211-8. PubMed ID: 2546051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cannabinoids on levels of acetylcholine and choline and on turnover rate of acetylcholine in various regions of the mouse brain.
    Tripathi HL; Vocci FJ; Brase DA; Dewey WL
    Alcohol Drug Res; 1987; 7(5-6):525-32. PubMed ID: 3620017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased beta-adrenergic receptors in rat brain after chronic administration of the selective serotonin uptake inhibitor fluoxetine.
    Byerley WF; McConnell EJ; McCabe RT; Dawson TM; Grosser BI; Wamsley JK
    Psychopharmacology (Berl); 1988; 94(1):141-3. PubMed ID: 2831557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta 9-tetrahydrocannabinol inhibits arachidonic acid acylation of phospholipids and triacylglycerols in guinea pig cerebral cortex slices.
    Reichman M; Nen W; Hokin LE
    Mol Pharmacol; 1991 Oct; 40(4):547-55. PubMed ID: 1656190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between cannabidiol and Δ
    Todd SM; Zhou C; Clarke DJ; Chohan TW; Bahceci D; Arnold JC
    Eur Neuropsychopharmacol; 2017 Feb; 27(2):132-145. PubMed ID: 28043732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of delta 9-tetrahydrocannabinol and cannabidiol on sodium-dependent high affinity choline uptake in the rat hippocampus.
    Lindamood C; Colasanti BK
    J Pharmacol Exp Ther; 1980 May; 213(2):216-21. PubMed ID: 6245205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of long term treatment with atypical neuroleptic drugs on beta adrenoceptor binding in rat cerebral cortex and myocardium.
    Gross G; Schümann HJ
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Dec; 321(4):271-5. PubMed ID: 6132342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of antidepressants on GABAB and beta-adrenergic receptors in rat cerebral cortex.
    McManus DJ; Greenshaw AJ
    Biochem Pharmacol; 1991 Sep; 42(8):1525-8. PubMed ID: 1656988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of beta-adrenergic receptors in different cortical and nuclear regions of cat cerebellum, as revealed by binding studies.
    Pompeiano M; Galbani P; Ronca-Testoni S
    Arch Ital Biol; 1989 Mar; 127(2):115-32. PubMed ID: 2541668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.