These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 6329821)
1. Comparative changes of levels of nitrendipine Ca2+ channels, of tetrodotoxin-sensitive Na+ channels and of ouabain-sensitive (Na+ + K+)-ATPase following denervation of rat and chick skeletal muscle. Schmid A; Kazazoglou T; Renaud JF; Lazdunski M FEBS Lett; 1984 Jun; 172(1):114-8. PubMed ID: 6329821 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of Na+,K+-ATPase of isolated smooth muscle membranes by the Ca2+ channel inhibitors, nimodipine and nitrendipine. Pan M; Janis RA Biochem Pharmacol; 1984 Mar; 33(5):787-91. PubMed ID: 6324799 [TBL] [Abstract][Full Text] [Related]
3. Putative Ca2+ channels in cardiac membranes. Subcellular distribution of [3H]nitrendipine receptors. Haase H; Vetter R; Will H; Will-Shahab L Biomed Biochim Acta; 1986; 45(1-2):S223-6. PubMed ID: 2421716 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of norepinephrine release elicited by Na+-K+ adenosine triphosphatase inhibition in the isolated rat kidney: involvement of voltage-dependent Ca++ channels. el-Din MM; Malik KU J Pharmacol Exp Ther; 1988 May; 245(2):436-43. PubMed ID: 2452871 [TBL] [Abstract][Full Text] [Related]
5. The effect of sodium pump blockade and denervation on the steady-state sodium permeability of mouse skeletal muscle fibres. Seabrooke SR; Ward MR; White NK Q J Exp Physiol; 1988 Jul; 73(4):561-72. PubMed ID: 2845463 [TBL] [Abstract][Full Text] [Related]
6. The nitrendipine-sensitive Ca2+ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo. Schmid A; Renaud JF; Fosset M; Meaux JP; Lazdunski M J Biol Chem; 1984 Sep; 259(18):11366-72. PubMed ID: 6088541 [TBL] [Abstract][Full Text] [Related]
7. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. I. Effect of the inhibition of the Na+,K+-adenosine triphosphatase pump by ouabain. Taglialatela M; Amoroso S; Kaparos G; Maurano F; Di Renzo GF; Annunziato L J Pharmacol Exp Ther; 1988 Aug; 246(2):682-8. PubMed ID: 2457079 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions. Brodie C; Sampson SR J Cell Physiol; 1989 Jul; 140(1):131-7. PubMed ID: 2544613 [TBL] [Abstract][Full Text] [Related]
9. Distribution of (Na+ + K+)ATPase and sodium channels in skeletal muscle and electroplax. Ariyasu RG; Deerinck TJ; Levinson SR; Ellisman MH J Neurocytol; 1987 Aug; 16(4):511-22. PubMed ID: 2445928 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of receptor sites for [3H]nitrendipine in chick hearts and physiological relation to the slow Ca2+ channel and to excitation-contraction coupling. Renaud JF; Kazazoglou T; Schmid A; Romey G; Lazdunski M Eur J Biochem; 1984 Mar; 139(3):673-81. PubMed ID: 6321185 [TBL] [Abstract][Full Text] [Related]
11. Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. High affinity blockade by organic Ca2+ channel blockers. Turner TJ; Goldin SM J Neurosci; 1985 Mar; 5(3):841-9. PubMed ID: 2579220 [TBL] [Abstract][Full Text] [Related]
12. [Active calcium and sodium transport by cardiac plasma membranes in the genetically hypertensive rat]. David-Dufilho M; Cirillo M; Beugras JP; Meyer P; Devynck MA Arch Mal Coeur Vaiss; 1984 Oct; 77(11):1261-5. PubMed ID: 6098237 [TBL] [Abstract][Full Text] [Related]
13. Effect of K-depletion on 3H-ouabain binding and Na-K-contents in mammalian skeletal muscle. Kjeldsen K; Nørgaard A; Clausen T Acta Physiol Scand; 1984 Oct; 122(2):103-17. PubMed ID: 6097094 [TBL] [Abstract][Full Text] [Related]
14. Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle. Rogart RB; Regan LJ Brain Res; 1985 Mar; 329(1-2):314-8. PubMed ID: 2579711 [TBL] [Abstract][Full Text] [Related]
15. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. Clausen T; Everts ME; Kjeldsen K J Physiol; 1987 Jul; 388():163-81. PubMed ID: 2443689 [TBL] [Abstract][Full Text] [Related]
16. Correlation between intracellular activities of Ca2+ and Na+ in rat cortical collecting duct--A possible coupling mechanism between Na+-K+-ATPase and Basolateral K+ conductance. Schlatter E; Haxelmans S; Ankorina I Kidney Blood Press Res; 1996; 19(1):24-31. PubMed ID: 8818114 [TBL] [Abstract][Full Text] [Related]
17. Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment. Desnuelle C; Lombet A; Serratrice G; Lazdunski M J Clin Invest; 1982 Feb; 69(2):358-67. PubMed ID: 6276440 [TBL] [Abstract][Full Text] [Related]
18. Autoradiographic localization of tetrodotoxin-sensitive Na+ channels in rat brain. Mourre C; Lombet A; Lazdunski M Neurosci Lett; 1984 Nov; 52(1-2):31-5. PubMed ID: 6098876 [TBL] [Abstract][Full Text] [Related]
19. Sodium channel distribution in normal and denervated rodent and snake skeletal muscle. Caldwell JH; Milton RL J Physiol; 1988 Jul; 401():145-61. PubMed ID: 2459372 [TBL] [Abstract][Full Text] [Related]
20. A smooth muscle cell line suitable for the study of voltage sensitive calcium channels. Rüegg UT; Doyle VM; Zuber JF; Hof RP Biochem Biophys Res Commun; 1985 Jul; 130(1):447-53. PubMed ID: 2411261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]