These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ca2+/calmodulin and cyclic 3,5' adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell. Hisatomi M; Hidaka H; Niki I Endocrinology; 1996 Nov; 137(11):4644-9. PubMed ID: 8895328 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the secretory granule movement in the pancreatic beta-cell: regulation by intracellular messengers. Niki I; Hisatomi M Jpn J Physiol; 1997; 47 Suppl 1():S25-6. PubMed ID: 9266318 [No Abstract] [Full Text] [Related]
7. Biochemistry of the mitotic spindle. Petzelt C Int Rev Cytol; 1979; 60():53-92. PubMed ID: 159269 [No Abstract] [Full Text] [Related]
8. Perifusion of isolated rat islets in vitro. Participation of the microtubular system in the biphasic release of insulin. Lacy PE; Walker MM; Fink CJ Diabetes; 1972 Oct; 21(10):987-98. PubMed ID: 4561331 [No Abstract] [Full Text] [Related]
9. Role of microtubules in the phasic pattern of insulin release. Malaisse WJ; Malaisse-Lagae F; Van Obberghen E; Somers G; Devis G; Ravazzola M; Orci L Ann N Y Acad Sci; 1975 Jun; 253():630-52. PubMed ID: 1096725 [No Abstract] [Full Text] [Related]
11. Identification and characterization of calmodulin-binding proteins in islet secretion granules. Watkins D; White BA J Biol Chem; 1985 Apr; 260(8):5161-5. PubMed ID: 2985576 [TBL] [Abstract][Full Text] [Related]
12. Morphometric studies of secretory granule distribution and association with microtubules in beta-cells of rat islets during glucose stimulation. Yorde DE; Kalkhoff RK Diabetes; 1987 Aug; 36(8):905-13. PubMed ID: 3297885 [TBL] [Abstract][Full Text] [Related]
13. The role of Ca2+ as a trigger for membrane fusion. Gratzl M; Ekerdt R; Dahl G Horm Metab Res Suppl; 1980; Suppl 10():144-9. PubMed ID: 7005055 [TBL] [Abstract][Full Text] [Related]
14. Association between endocrine pancreatic secretory granules and in-vitro-assembled microtubules is dependent upon microtubule-associated proteins. Suprenant KA; Dentler WL J Cell Biol; 1982 Apr; 93(1):164-74. PubMed ID: 7040413 [TBL] [Abstract][Full Text] [Related]
15. The cytoskeleton and cell movement: general considerations. Adelstein RS; Scordilis SP; Trotter JA Methods Achiev Exp Pathol; 1979; 8():1-41. PubMed ID: 154004 [TBL] [Abstract][Full Text] [Related]
16. Elevated beta-cell calmodulin produces a unique insulin secretory defect in transgenic mice. Epstein PN; Ribar TJ; Decker GL; Yaney G; Means AR Endocrinology; 1992 Mar; 130(3):1387-93. PubMed ID: 1371447 [TBL] [Abstract][Full Text] [Related]
17. The cytoskeleton in mRNA localization and cell differentiation. Nasmyth K; Jansen RP Curr Opin Cell Biol; 1997 Jun; 9(3):396-400. PubMed ID: 9159073 [TBL] [Abstract][Full Text] [Related]
18. Fine structural distribution of microtubules in pancreatic B cells of the rat. Kern HF Cell Tissue Res; 1975 Dec; 164(2):261-9. PubMed ID: 1104185 [TBL] [Abstract][Full Text] [Related]
19. Morphological relations between rat -secretory granules and the microtubular-microfilament system during sustained insulin release in vitro. Gómez-Acebo J; Hermida OG J Anat; 1973 Apr; 114(Pt 3):421-37. PubMed ID: 4577303 [No Abstract] [Full Text] [Related]
20. The role of the cytoskeleton in pancreatic B-cell function. Malaisse WJ; Orci L Methods Achiev Exp Pathol; 1979; 9():112-36. PubMed ID: 368514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]