These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6330294)

  • 1. Interaction between low-affinity cupric ion and human methemoglobin.
    Antholine WE; Basosi R; Hyde JS; Taketa F
    J Inorg Biochem; 1984 Jun; 21(2):125-36. PubMed ID: 6330294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins.
    Rifkind JM; Lauer LD; Chiang SC; Li NC
    Biochemistry; 1976 Nov; 15(24):5337-43. PubMed ID: 187214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins.
    Antholine WE; Taketa F; Wang JT; Manoharan PT; Rifkind JM
    J Inorg Biochem; 1985 Oct; 25(2):95-108. PubMed ID: 2997391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the binding of imidazole to valence hybrid and methemoglobin: an assignment of individual heme reactivity.
    Brittain T
    J Inorg Biochem; 1981 Nov; 15(3):243-52. PubMed ID: 7310403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal electron transfer between hemes and Cu(II) bound at cysteine beta93 promotes methemoglobin reduction by carbon monoxide.
    Bonaventura C; Godette G; Tesh S; Holm DE; Bonaventura J; Crumbliss AL; Pearce LL; Peterson J
    J Biol Chem; 1999 Feb; 274(9):5499-507. PubMed ID: 10026163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the existence of a low spin complex in acidic methemoglobin: its structure and formation.
    Rein H; Ristau O; Ruckpaul K
    Biochim Biophys Acta; 1975 Jun; 393(2):373-8. PubMed ID: 238610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton magnetic resonance study of p-mercuribenzoate binding and structural changes in methemoglobin.
    Neya S; Morishima I
    Biochemistry; 1980 Jan; 19(2):258-65. PubMed ID: 7352984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies of protein-heme interactions accompanying the allosteric transition in methemoglobins.
    Henry ER; Rousseau DL; Hopfield JJ; Noble RW; Simon SR
    Biochemistry; 1985 Oct; 24(21):5907-18. PubMed ID: 4084499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered heme environments in opossum and rabbit methemoglobins.
    John ME; DuBois RN; Waterman MR
    Z Naturforsch C Biosci; 1981; 36(11-12):964-7. PubMed ID: 6275619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mode for heme-heme interactions in hemoglobin associated with distal perturbations.
    Levy A; Sharma VS; Zhang L; Rifkind JM
    Biophys J; 1992 Mar; 61(3):750-5. PubMed ID: 1324020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction.
    Perutz MF; Heidner EJ; Ladner JE; Beetlestone JG; Ho C; Slade EF
    Biochemistry; 1974 May; 13(10):2187-200. PubMed ID: 4363756
    [No Abstract]   [Full Text] [Related]  

  • 13. Low-temperature formation of a distal histidine complex in hemoglobin: a probe for heme pocket flexibility.
    Levy A; Rifkind JM
    Biochemistry; 1985 Oct; 24(22):6050-4. PubMed ID: 4084505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein.
    Coulter ED; Moon N; Batie CJ; Dunham WR; Ballou DP
    Biochemistry; 1999 Aug; 38(34):11062-72. PubMed ID: 10460161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidation of cat, human, and the cat-human hybrid hemoglobins alpha 2 human beta 2 cat and alpha 2 cat beta 2 human by copper(II).
    Taketa F; Antholine WE
    J Inorg Biochem; 1982 Oct; 17(2):109-20. PubMed ID: 7175522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular complexes of quinoline antimalarials with iron-porphyrin components of protease-digested methemoglobin.
    Jearnpipatkul A; Panijpan B
    Chem Biol Interact; 1980 Dec; 33(1):83-90. PubMed ID: 7002334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal ion binding to human hemopexin.
    Mauk MR; Rosell FI; Lelj-Garolla B; Moore GR; Mauk AG
    Biochemistry; 2005 Feb; 44(6):1864-71. PubMed ID: 15697212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase.
    Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ
    Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral, conformational and chemical properties of opossum methemoglobin.
    John ME; Waterman MR
    Eur J Biochem; 1981 Mar; 115(1):1-6. PubMed ID: 6262075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.