These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6330932)

  • 1. Interactions of lead and cadmium on acetylcholine release at the frog neuromuscular junction.
    Cooper GP; Manalis RS
    Toxicol Appl Pharmacol; 1984 Jul; 74(3):411-6. PubMed ID: 6330932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lead on neuromuscular transmission in the frog.
    Manalis RS; Cooper GP; Pomeroy SL
    Brain Res; 1984 Feb; 294(1):95-109. PubMed ID: 6320979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium: effects on transmitter release at the frog neuromuscular junction.
    Cooper GP; Manalis RS
    Eur J Pharmacol; 1984 Apr; 99(4):251-6. PubMed ID: 6145600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals: effects on synaptic transmission.
    Cooper GP; Suszkiw JB; Manalis RS
    Neurotoxicology; 1984; 5(3):247-66. PubMed ID: 6097846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of heavy metals on synaptic transmission: a review.
    Cooper GP; Manalis RS
    Neurotoxicology; 1983; 4(4):69-83. PubMed ID: 6322059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal by cysteine of the cadmium-induced block of skeletal neuromuscular transmission in vitro.
    Braga MF; Rowan EG
    Br J Pharmacol; 1992 Sep; 107(1):95-100. PubMed ID: 1330169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of lead on neuromuscular junctions.
    Atchison WD; Narahashi T
    Neurotoxicology; 1984; 5(3):267-82. PubMed ID: 6097847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of an L-type Ca2+ channel antagonist on activity- and phosphorylation-enhanced release of acetylcholine at the neuromuscular junction of the frog in vitro.
    Arenson MS; Gill DS
    Eur J Neurosci; 1996 Mar; 8(3):437-45. PubMed ID: 8963434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple actions of beta-bungarotoxin on acetylcholine release at amphibian motor nerve terminals.
    Alderdice MT; Volle RL
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Apr; 316(2):126-30. PubMed ID: 6972488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further comparison of the effects of physostigmine and neostigmine on frog neuromuscular transmission.
    Alderdice MT
    Clin Exp Pharmacol Physiol; 1982; 9(1):35-43. PubMed ID: 6284424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of calcium channel blockers on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Lee DT; Sosa MA; Mosier DR
    Synapse; 1993 Dec; 15(4):251-62. PubMed ID: 7908759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative neuromuscular effects of lincomycin and clindamycin.
    Rubbo JT; Gergis SD; Sokoll MD
    Anesth Analg; 1977; 56(3):329-32. PubMed ID: 194504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions.
    Kita H; Narita K; Van der Kloot W
    Brain Res; 1981 Jan; 205(1):111-21. PubMed ID: 6258705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of emetine and dehydroemetine at the frog neuromuscular junction.
    Alkadhi KA
    Eur J Pharmacol; 1987 Jun; 138(2):257-64. PubMed ID: 2887439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature endplate potentials as a tool in neurotoxicology.
    Csicsaky M; Wiegand H; Uhlig S; Lohmann H; Papadopoulos R
    Toxicology; 1988 Apr; 49(1):121-9. PubMed ID: 2836968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H; van der Kloot W
    J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg++ antagonism of a prejunctional opiate receptor mediated effect at the frog neuromuscular junction.
    Durham HD; Frank GB
    Arch Int Pharmacodyn Ther; 1982 Sep; 259(1):72-82. PubMed ID: 6295295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.