These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 6331043)
1. Membrane potential change of human polymorphonuclear leukocytes stimulated with formyl-methionyl-leucyl-phenylalanine. Ohno Y; Kanoh T; Uchino H Nihon Ketsueki Gakkai Zasshi; 1984 Feb; 47(1):48-58. PubMed ID: 6331043 [No Abstract] [Full Text] [Related]
2. Membrane potential in human myeloid leukemia cell line ML-1: responsiveness of granulocytic and monocytic differentiated cells. Hrouda V; Haskovec C; Plásek J; Sigler K Gen Physiol Biophys; 1991 Feb; 10(1):49-57. PubMed ID: 1651272 [TBL] [Abstract][Full Text] [Related]
3. Neutrophil chemotactic heterogeneity to N-formyl-methionyl-leucyl-phenylalanine detected by the under-agarose assay. Quitt M; Torres M; McGuire W; Beyer L; Coates TD J Lab Clin Med; 1990 Feb; 115(2):159-64. PubMed ID: 2299263 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment. Fletcher MP J Immunol; 1986 Jun; 136(11):4213-9. PubMed ID: 3009618 [TBL] [Abstract][Full Text] [Related]
5. Superoxide anion production and phospholipase D-mediated generation of diacylglycerol are subnormal after N-formyl-methionyl-leucyl-phenylalanine stimulation of polymorphonuclear granulocytes in polycythemia vera. Samuelsson J; Hansson A; Rosendahl K; Palmblad J J Lab Clin Med; 1993 Feb; 121(2):310-9. PubMed ID: 8381848 [TBL] [Abstract][Full Text] [Related]
6. [Formation of signal ATP in plasma membranes of polymorphonuclear leukocytes activated by formyl-methionyl-leucyl-phenylalanine]. Karelin AA; Globa AG; Demidova VS; Marchuk AI Vopr Med Khim; 1986; 32(5):93-8. PubMed ID: 3776122 [TBL] [Abstract][Full Text] [Related]
7. Polymorphonuclear leukocytes from asthmatics release more calcium from intracellular stores and have enhanced calcium increase after stimulation with N-formyl-methionyl-leucyl-phenylalanine. Nowak D; Bialasiewicz P; Piasecka G; Antczak A; Krol M Int J Clin Lab Res; 1997; 27(3):189-94. PubMed ID: 9352382 [TBL] [Abstract][Full Text] [Related]
8. Effects of polyene macrolides on the membrane potential of resting and activated human leukocytes. Jullien S; Capuozzo E; Salerno C; Crifò C Biochem Int; 1991 May; 24(2):307-19. PubMed ID: 1930249 [TBL] [Abstract][Full Text] [Related]
9. Interaction of chemotactic factors with human polymorphonuclear leukocytes: studies using a membrane potential-sensitive cyanine dye. Seligmann BE; Gallin EK; Martin DL; Shain W; Gallin JI J Membr Biol; 1980; 52(3):257-72. PubMed ID: 6770097 [TBL] [Abstract][Full Text] [Related]
10. Age-related decline in lysosomal enzyme release from polymorphonuclear leukocytes after N-formyl-methionyl-leucyl-phenylalanine stimulation. Suzuki K; Swenson C; Sasagawa S; Sakatani T; Watanabe M; Kobayashi M; Fujikura T Exp Hematol; 1983 Nov; 11(10):1005-13. PubMed ID: 6420176 [TBL] [Abstract][Full Text] [Related]
11. High light scatter by neutrophils in the Bayer-Technicon H*2 analyzer: a screening test of morphologically defective responsiveness to in vitro chemotactic stimulation. Lippi U; Bellavite P; Schinella M; Nicoli M; Lippi G Eur J Clin Chem Clin Biochem; 1994 Jan; 32(1):11-7. PubMed ID: 8167188 [TBL] [Abstract][Full Text] [Related]
12. Prostaglandin E1 inhibits N-formyl-methionyl-leucyl-phenylalanine-mediated depolarization responses by decreasing the proportion of responsive cells without affecting chemotaxin-induced forward light scatter changes. Fletcher MP J Immunol; 1987 Dec; 139(12):4167-73. PubMed ID: 3693900 [TBL] [Abstract][Full Text] [Related]
13. Changes of membrane fluidity in chemotactic peptide-stimulated polymorphonuclear leukocytes. Valentino M; Governa M; Fiorini R; Curatola G Biochem Biophys Res Commun; 1986 Dec; 141(3):1151-6. PubMed ID: 3814118 [TBL] [Abstract][Full Text] [Related]
15. Transmembrane potential changes associated with superoxide release from human granulocytes. Jones GS; VanDyke K; Castranova V J Cell Physiol; 1981 Jan; 106(1):75-83. PubMed ID: 6259186 [TBL] [Abstract][Full Text] [Related]
16. Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils. Andersson T; Dahlgren C; Pozzan T; Stendahl O; Lew PD Mol Pharmacol; 1986 Nov; 30(5):437-43. PubMed ID: 2430168 [TBL] [Abstract][Full Text] [Related]
17. Neutrophil hyperpolarization in response to a chemotactic peptide. Lazzari KG; Proto P; Simons ER J Biol Chem; 1990 Jul; 265(19):10959-67. PubMed ID: 2162827 [TBL] [Abstract][Full Text] [Related]
18. Redistribution of protein kinase C isoforms in human neutrophils stimulated by formyl peptides and phorbol myristate acetate. Dang PM; Rais S; Hakim J; Périanin A Biochem Biophys Res Commun; 1995 Jul; 212(2):664-72. PubMed ID: 7626081 [TBL] [Abstract][Full Text] [Related]
19. Migration of polymorphonuclear leukocytes through human amnion membrane--a scanning electron microscopic study. Bakowski B; Tschesche H Biol Chem Hoppe Seyler; 1992 Jul; 373(7):529-46. PubMed ID: 1515084 [TBL] [Abstract][Full Text] [Related]
20. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor. English D; Broxmeyer HE; Gabig TG; Akard LP; Williams DE; Hoffman R J Immunol; 1988 Oct; 141(7):2400-6. PubMed ID: 3049807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]