BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6331068)

  • 1. Effects of quinine on the isometric tension and intracellular calcium movements in single giant muscle fibres.
    Franciolini F
    Acta Physiol Hung; 1984; 63(2):147-51. PubMed ID: 6331068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish.
    Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V
    Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of extracellular calcium in triggering contraction in muscle fibres from barnacle under membrane potential control.
    Hidalgo J; Luxoro M; Rojas E
    J Physiol; 1979 Mar; 288():313-30. PubMed ID: 469720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the intracellular release of calcium by Dantrolene in barnacle giant muscle fibres.
    Desmedt JE; Hainaut K
    J Physiol; 1977 Feb; 265(2):565-85. PubMed ID: 850208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transients and relaxation in single muscle fibers.
    Gordon AM; Ridgway EB
    Eur J Cardiol; 1978 Jun; 7 Suppl():27-34. PubMed ID: 668766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sites of action of Lilly 18947 in skeletal muscle.
    Suarez-Kurtz G; Paumgartten FJ
    J Pharmacol Exp Ther; 1973 Aug; 186(2):373-84. PubMed ID: 4719790
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of quinine on tension development, membrane potentials and excitation-contraction coupling of crab skeletal muscle fibres.
    Huddart H
    J Physiol; 1971 Aug; 216(3):641-57. PubMed ID: 5565642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca-induced Ca release from the sarcoplasmic reticulum of isolated myofibrillar bundles of barnacle muscle fibres.
    Lea TJ; Ashley CC
    Pflugers Arch; 1989 Feb; 413(4):401-6. PubMed ID: 2928093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of physostigmine on the excitation-contraction coupling of skeletal muscle fibres.
    Szücs G; Fuxreiter M; Sirkó E; Szállási A
    Acta Physiol Hung; 1983; 62(1):61-73. PubMed ID: 6316729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres.
    Horiuti K; Higuchi H; Umazume Y; Konishi M; Okazaki O; Kurihara S
    J Muscle Res Cell Motil; 1988 Apr; 9(2):156-64. PubMed ID: 2458382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle.
    Friedrich O; Hund E; Weber C; Hacke W; Fink RH
    J Neurol; 2004 Jan; 251(1):53-65. PubMed ID: 14999490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control.
    Atwater I; Rojas E; Vergara J
    J Physiol; 1974 Dec; 243(2):523-51. PubMed ID: 4449073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of the free calcium change in single muscle fibres during contraction.
    Ashley CC; Moisescu DG
    J Physiol; 1973 May; 231(1):23P-25P. PubMed ID: 4715354
    [No Abstract]   [Full Text] [Related]  

  • 16. Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system.
    Inoue I; Tsutsui I; Bone Q
    J Comp Physiol B; 2002 Aug; 172(6):541-6. PubMed ID: 12192516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of A23187 ionophore on calcium movements and contraction processes in single barnacle muscle fibres.
    Desmedt JE; Hainaut K
    J Physiol; 1976 May; 257(1):87-107. PubMed ID: 781214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early changes in the functions of cardiac sarcoplasmic reticulum in volume-overloaded cardiac hypertrophy in rats.
    Hisamatsu Y; Ohkusa T; Kihara Y; Inoko M; Ueyama T; Yano M; Sasayama S; Matsuzaki M
    J Mol Cell Cardiol; 1997 Apr; 29(4):1097-109. PubMed ID: 9160862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes.
    Kettlewell S; Most P; Currie S; Koch WJ; Smith GL
    J Mol Cell Cardiol; 2005 Dec; 39(6):900-10. PubMed ID: 16236309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of the UTP-induced tension in mammalian skeletal muscles.
    Vianna-Jorge R; Mounier Y; Suarez-Kurtz G
    Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):224-32. PubMed ID: 10797865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.