BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 6331176)

  • 1. Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule.
    Gullans SR; Brazy PC; Dennis VW; Mandel LJ
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F859-69. PubMed ID: 6331176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule.
    Gullans SR; Brazy PC; Soltoff SP; Dennis VW; Mandel LJ
    Am J Physiol; 1982 Aug; 243(2):F133-40. PubMed ID: 7114212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Norepinephrine increases Na+-K+-ATPase and solute transport in rabbit proximal tubules.
    Beach RE; Schwab SJ; Brazy PC; Dennis VW
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F215-20. PubMed ID: 3028169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active ion transport in the renal proximal tubule. III. The ATP dependence of the Na pump.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):643-62. PubMed ID: 6094706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between intracellular ATP and the sodium pump activity in dog renal tubules.
    Ammann H; Noël J; Boulanger Y; Vinay P
    Can J Physiol Pharmacol; 1990 Jan; 68(1):57-67. PubMed ID: 2158385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between phosphate and oxidative metabolism in proximal renal tubules.
    Brazy PC; Mandel LJ; Gullans SR; Soltoff SP
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F575-81. PubMed ID: 6496685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of phosphate transport in the proximal tubule by metabolic substrates.
    Gullans SR; Brazy PC; Mandel LJ; Dennis VW
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F582-7. PubMed ID: 6496686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonium replaces potassium in supporting sodium transport by the Na-K-ATPase of renal proximal straight tubules.
    Garvin JL; Burg MB; Knepper MA
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F785-8. PubMed ID: 2998206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies.
    Turner RJ; Moran A
    Am J Physiol; 1982 Apr; 242(4):F406-14. PubMed ID: 6278960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amiloride analogues inhibit proximal tubule metabolism.
    Soltoff SP; Cragoe EJ; Mandel LJ
    Am J Physiol; 1986 May; 250(5 Pt 1):C744-7. PubMed ID: 2422947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium transport in the rabbit renal proximal tubule: effects of barium, ouabain, valinomycin, and other ionophores.
    Soltoff SP; Mandel LJ
    J Membr Biol; 1986; 94(2):153-61. PubMed ID: 3031306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):623-42. PubMed ID: 6094705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading.
    Coor C; Salmon RF; Quigley R; Marver D; Baum M
    J Clin Invest; 1991 Mar; 87(3):955-61. PubMed ID: 1847941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between renal metabolism and proximal tubule transport during ontogeny.
    Barac-Nieto M; Spitzer A
    Pediatr Nephrol; 1988 Jul; 2(3):356-67. PubMed ID: 3153041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules.
    Brady HR; Kone BC; Stromski ME; Zeidel ML; Giebisch G; Gullans SR
    Am J Physiol; 1990 May; 258(5 Pt 2):F1181-7. PubMed ID: 2159714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative requirement for ATP for active transport in isolated renal cells.
    Tessitore N; Sakhrani LM; Massry SG
    Am J Physiol; 1986 Jul; 251(1 Pt 1):C120-7. PubMed ID: 2425627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased renal metabolism in diabetes. Mechanism and functional implications.
    Körner A; Eklöf AC; Celsi G; Aperia A
    Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced modulation of ATP turnover in dog and rabbit proximal tubules.
    Noël J; Tejedor A; Vinay P; Laprade R
    J Membr Biol; 1992 Jun; 128(3):205-18. PubMed ID: 1323687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor binding, stimulation of phosphorylation, and inhibition of gluconeogenesis in rat proximal tubule.
    Harris RC; Daniel TO
    J Cell Physiol; 1989 May; 139(2):383-91. PubMed ID: 2785525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could cytoplasmic concentration gradients for sodium and ATP exist in intact renal cells?
    Ammann H; Noël J; Tejedor A; Boulanger Y; Gougoux A; Vinay P
    Can J Physiol Pharmacol; 1995 Apr; 73(4):421-35. PubMed ID: 7671185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.