These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6331179)

  • 21. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum.
    Okabe E; Kuse K; Sekishita T; Suyama N; Tanaka K; Ito H
    J Pharmacol Exp Ther; 1991 Mar; 256(3):868-75. PubMed ID: 1848630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats.
    Hussain S; Ali SF
    Neurosci Lett; 1999 Feb; 261(1-2):21-4. PubMed ID: 10081917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevention of free radical-induced myocardial reperfusion injury with allopurinol.
    Stewart JR; Crute SL; Loughlin V; Hess ML; Greenfield LJ
    J Thorac Cardiovasc Surg; 1985 Jul; 90(1):68-72. PubMed ID: 2989620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues.
    Dionisi O; Galeotti T; Terranova T; Azzi A
    Biochim Biophys Acta; 1975 Oct; 403(2):292-300. PubMed ID: 241399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium, in vivo.
    Del Maestro RF; Planker M; Arfors KE
    Int J Microcirc Clin Exp; 1982; 1(2):105-20. PubMed ID: 6088411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 27. Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids.
    Basu DK; Karmazyn M
    J Pharmacol Exp Ther; 1987 Aug; 242(2):673-85. PubMed ID: 3112369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
    Coudray C; Rachidi S; Favier A
    Biol Trace Elem Res; 1993 Sep; 38(3):273-87. PubMed ID: 7504944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free radicals and myocardial ischemia. The role of xanthine oxidase.
    McCord JM; Roy RS; Schaffer SW
    Adv Myocardiol; 1985; 5():183-9. PubMed ID: 2982206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible ultrastructural alterations in the myocytic mitochondria of isolated rat hearts induced by oxygen radicals.
    Hegstad AC; Ytrehus K; Myklebust R; Jørgensen L
    Ultrastruct Pathol; 1997; 21(3):253-62. PubMed ID: 9183826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of free radicals and oxidants on myocardial cellular injury.
    Mukhopadhyay A; Steinberg N; Das DK
    Clin Physiol Biochem; 1989; 7(6):278-85. PubMed ID: 2560689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury.
    Otani H; Tanaka H; Inoue T; Umemoto M; Omoto K; Tanaka K; Sato T; Osako T; Masuda A; Nonoyama A
    Circ Res; 1984 Aug; 55(2):168-75. PubMed ID: 6086177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of oxygen radicals in ocular inflammation and cellular damage.
    Mittag T
    Exp Eye Res; 1984 Dec; 39(6):759-69. PubMed ID: 6097470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An investigation into the role of hydroxyl radical in xanthine oxidase-dependent lipid peroxidation.
    Tien M; Svingen BA; Aust SD
    Arch Biochem Biophys; 1982 Jun; 216(1):142-51. PubMed ID: 6285826
    [No Abstract]   [Full Text] [Related]  

  • 36. Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical.
    Hull DS; Green K; Thomas L; Alderman N
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1246-53. PubMed ID: 6436189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of exogenously generated oxidant species on myocardial function.
    Blaustein AS; Schine L; Brooks WW; Fanburg BL; Bing OH
    Am J Physiol; 1986 Apr; 250(4 Pt 2):H595-9. PubMed ID: 3754391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac depressant effects of oxygen free radicals.
    Prasad K; Kalra J; Bharadwaj L
    Angiology; 1993 Apr; 44(4):257-70. PubMed ID: 8457076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils.
    Pou S; Huang YI; Bhan A; Bhadti VS; Hosmane RS; Wu SY; Cao GL; Rosen GM
    Anal Biochem; 1993 Jul; 212(1):85-90. PubMed ID: 8396365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.