BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6331188)

  • 21. The Na+-dependent sugar carrier as a sensor of the cellular electrochemical Na+ potential.
    Kimmich GA
    Prog Clin Biol Res; 1981; 73():129-42. PubMed ID: 7323079
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of dehydration on apical Na+-H+ exchange activity and Na+-dependent sugar transport in brush-border membrane vesicles isolated from chick intestine.
    De la Horra MC; Calonge ML; Ilundáin AA
    Pflugers Arch; 1998 Jun; 436(1):112-6. PubMed ID: 9560454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U
    Bibl Nutr Dieta; 1975; (22):42-9. PubMed ID: 1095010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle.
    Clausen T; Flatman JA
    Am J Physiol; 1987 Apr; 252(4 Pt 1):E492-9. PubMed ID: 3031991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of ion gradient-dependent H+ transport systems in isolated enterocytes from the chick.
    Montrose MH; Bebernitz G; Kimmich GA
    J Membr Biol; 1985; 88(1):55-66. PubMed ID: 3005582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; Gamiño SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new method for determination of relative ion permeabilities in isolated cells.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Am J Physiol; 1985 May; 248(5 Pt 1):C399-405. PubMed ID: 3993766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stoichiometry of Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.
    Soleimani M; Grassi SM; Aronson PS
    J Clin Invest; 1987 Apr; 79(4):1276-80. PubMed ID: 3558825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of the serosal sugar carrier in isolated intestinal epithelial cells by saccharin.
    Kimmich GA; Randles J; Anderson RL
    Food Chem Toxicol; 1988; 26(11-12):927-34. PubMed ID: 3209132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium.
    Candia OA; Reinach PS; Alvarez L
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C454-61. PubMed ID: 6093573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ATP- and Ca2+-regulated Na+ channel in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    Am J Physiol; 1982 Sep; 243(3):C116-23. PubMed ID: 6287858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal electrophysiology and transmural ion transport in freshwater prawns.
    Ahearn GA
    Am J Physiol; 1980 Jul; 239(1):C1-10. PubMed ID: 7395980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
    Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY
    Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-dependent succinate transport by isolated chick intestinal cells.
    Kimmich GA; Randles J; Bennett E
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1151-7. PubMed ID: 2058650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intestinal sugar transport: does the Na+ gradient provide all the energy?
    Baker RD
    Am J Physiol; 1986 Apr; 250(4 Pt 1):G448-54. PubMed ID: 3963191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SITS-sensitive Cl- conductance pathway in chick intestinal cells.
    Montrose M; Randles J; Kimmich GA
    Am J Physiol; 1987 Nov; 253(5 Pt 1):C693-9. PubMed ID: 3688217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Na+-translocating ATPase in the plasma membrane of the marine microalga Tetraselmis viridis catalyzes Na+/H+ exchange.
    Balnokin YV; Popova LG; Pagis LY; Andreev IM
    Planta; 2004 Jun; 219(2):332-7. PubMed ID: 14997393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potassium transport by rabbit descending colon, in vitro.
    Schultz SG
    Fed Proc; 1981 Jul; 40(9):2408-11. PubMed ID: 6265290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.