These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 633155)

  • 1. A depolarizing inhibitory potential in neurones of the olfactory cortex in vitro.
    Scholfield CN
    J Physiol; 1978 Feb; 275():547-57. PubMed ID: 633155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical properties of neurones in the olfactory cortex slice in vitro.
    Scholfield CN
    J Physiol; 1978 Feb; 275():535-46. PubMed ID: 633153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study.
    Jahnsen H; Llinás R
    J Physiol; 1984 Apr; 349():205-26. PubMed ID: 6737292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex.
    Scholfield CN
    J Physiol; 1978 Feb; 275():559-66. PubMed ID: 633156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the action of pentobarbitone on the excitatory postsynaptic potentials and membrane properties of neurones in the guinea-pig olfactory cortex.
    Richards CD; Strupinski K
    Br J Pharmacol; 1986 Oct; 89(2):321-5. PubMed ID: 3779214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarization of neurones in the isolated olfactory cortex of the guinea-pig by gamma-aminobutyric acid.
    Brown DA; Scholfield CN
    Br J Pharmacol; 1979 Feb; 65(2):339-45. PubMed ID: 216454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of halothane anaesthesia.
    Richards CD
    J Physiol; 1973 Sep; 233(2):439-56. PubMed ID: 4355805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus.
    Surprenant A
    J Physiol; 1984 Jun; 351():343-61. PubMed ID: 6205143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic responses of guinea pig and rat central amygdala neurons in vitro.
    Nose I; Higashi H; Inokuchi H; Nishi S
    J Neurophysiol; 1991 May; 65(5):1227-41. PubMed ID: 1678422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of ether and methoxyflurane on synaptic transmission in isolated preparations of the mammalian cortex.
    Richards CD; Russell WJ; Smaje JC
    J Physiol; 1975 Jun; 248(1):121-42. PubMed ID: 168356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic responses of guinea pig cingulate cortical neurons in vitro.
    Higashi H; Tanaka E; Nishi S
    J Neurophysiol; 1991 Apr; 65(4):822-33. PubMed ID: 1675672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actions of excitatory amino acids on motoneurones in the feline spinal cord.
    Engberg I; Flatman JA; Lambert JD
    J Physiol; 1979 Mar; 288():227-61. PubMed ID: 224166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and anatomical characteristics of reticulospinalneurones in lamprey.
    Wickelgren WO
    J Physiol; 1977 Aug; 270(1):89-114. PubMed ID: 915826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons.
    Thompson SM; Deisz RA; Prince DA
    J Neurophysiol; 1988 Jul; 60(1):105-24. PubMed ID: 3404212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro.
    Stewart M; Wong RK
    J Neurophysiol; 1993 Jul; 70(1):232-45. PubMed ID: 8395577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus.
    Perreault P; Avoli M
    J Neurophysiol; 1989 May; 61(5):953-70. PubMed ID: 2566657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones.
    Deisz RA; Lux HD
    J Physiol; 1982 May; 326():123-38. PubMed ID: 7108786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: inhibitory synaptic mechanisms.
    Kim YI; Dudek FE
    J Physiol; 1992 Dec; 458():247-60. PubMed ID: 1302267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.