These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6332031)

  • 1. Increased projection of ascending dorsal root fibers to vestibular nuclei after hemilabyrinthectomy in the frog.
    Dieringer N; Künzle H; Precht W
    Exp Brain Res; 1984; 55(3):574-8. PubMed ID: 6332031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal extent of dorsal root fibres in the spinal cord and brain stem of the frog.
    Antal M; Tornai I; Székely G
    Neuroscience; 1980; 5(7):1311-22. PubMed ID: 6967570
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory Pathways.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):329-357. PubMed ID: 314903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar afferents in the frogs, Rana esculenta and Rana temporaria.
    Grover BG; Grüsser-Cornehls U
    Cell Tissue Res; 1984; 237(2):259-67. PubMed ID: 6332678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projection of afferents from individual vestibular sense organs to the vestibular nuclei in the pigeon.
    Schwarz DW; Schwarz IE
    Acta Otolaryngol; 1986; 102(5-6):463-73. PubMed ID: 3788546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for an alteration in brainstem cholinergic pathways following unilateral labyrinthectomy in the frog.
    Kasik P; Cochran SL; Dieringer N; Precht W
    Brain Res; 1986 Jan; 363(1):188-91. PubMed ID: 3484989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):311-28. PubMed ID: 226388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution of vestibular nerve fiber endings in the ventral vestibular nucleus of the stato-acoustic complex of the medulla oblongata in Rana temporaria frogs].
    Adanina VO
    Zh Evol Biokhim Fiziol; 1977; 13(6):723-8. PubMed ID: 304643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal compensation for postural deficits after hemilabyrinthectomy?
    Straka H; Kunkel A; Dieringer N
    Neuroreport; 1993 Sep; 4(9):1071-4. PubMed ID: 8219030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal root projections to the cerebellum in turtle.
    Künzle H
    Exp Brain Res; 1982; 45(3):464-6. PubMed ID: 7067780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections and oculomotor projections of the superior vestibular nucleus and cell group 'y'.
    Carpenter MB; Cowie RJ
    Brain Res; 1985 Jun; 336(2):265-87. PubMed ID: 3839149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light and electron microscopic autoradiographic study of the dorsal root projections to the cat dorsal horn.
    Snyder RL
    Neuroscience; 1982 Jun; 7(6):1417-37. PubMed ID: 6889693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections.
    Henkel CK; Martin GF
    J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vestibular primary afferents and the vestibulospinal projections in the developing and adult opossum, Monodelphis domestica.
    Pflieger JF; Cabana T
    Anat Embryol (Berl); 1996 Jul; 194(1):75-88. PubMed ID: 8800425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellar afferents from the vestibular and perihypoglossal nuclei in sheep studied with retrograde transport of horseradish peroxidase.
    Saigal RP; Karamanlidis AN; Voogd J; Michaloudi H; Mangana O
    J Hirnforsch; 1982; 23(1):13-22. PubMed ID: 7096989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of the eighth cranial nerve. III. Central projections of the primary afferent fibers from individual vestibular receptors in the bullfrog.
    Newman A; Suarez C; Kuruvilla A; Honrubia V
    Laryngoscope; 1989 Feb; 99(2):162-73. PubMed ID: 2783616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The direct connections of the C2 dorsal root ganglia in the Macaca irus monkey: relevance to the chiropractic profession.
    Fitz-Ritson D
    J Manipulative Physiol Ther; 1985 Sep; 8(3):147-56. PubMed ID: 4056624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.