These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43 related articles for article (PubMed ID: 6332043)
1. K+ depolarization and phospholipid metabolism in frog sartorius muscle. Novotný I; Saleh F; Novotná R Gen Physiol Biophys; 1983 Oct; 2(5):329-37. PubMed ID: 6332043 [TBL] [Abstract][Full Text] [Related]
2. The effect of chlorpromazine and dibucaine on phospholipid metabolism in the frog sartorius muscle. Novotný I; Saleh F; Novotná R Physiol Bohemoslov; 1984; 33(1):59-65. PubMed ID: 6608743 [TBL] [Abstract][Full Text] [Related]
3. The effect of potassium depolarization on 32P-labelling of phosphatidylinositol and phosphatidylserine in frog sartorius muscle. Novotný I; Zivný A; Saleh F Physiol Bohemoslov; 1978; 27(5):477-83. PubMed ID: 153541 [No Abstract] [Full Text] [Related]
4. Effects of Ca(2+)-channel drugs on K(+)-induced respiration in skeletal muscles. Barnes WS Med Sci Sports Exerc; 1993 Apr; 25(4):473-8. PubMed ID: 8479301 [TBL] [Abstract][Full Text] [Related]
5. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils. Takenawa T; Homma Y; Nagai Y J Immunol; 1983 Jun; 130(6):2849-55. PubMed ID: 6406597 [TBL] [Abstract][Full Text] [Related]
6. [Neurotrophic control of the resting membrane potential of phasic muscle fibers in frogs]. Volkov EM; Poletaev GI Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1807-13. PubMed ID: 7037469 [TBL] [Abstract][Full Text] [Related]
7. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels. Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858 [TBL] [Abstract][Full Text] [Related]
8. Effects of 3,4-diaminopyridine on myoplasmic calcium and phosphoinositide hydrolysis in frog sartorius muscle fibers. Xu ZM; Dong Z; Zhu PH Zhongguo Yao Li Xue Bao; 1994 Mar; 15(2):139-41. PubMed ID: 8010108 [TBL] [Abstract][Full Text] [Related]
9. [Characteristics of functioning of electromechanical coupling in striated muscles of higher and lower vertebrates]. Nasledov GA; Katina IE; Zhitnikova IuV Biofizika; 2002; 47(4):716-27. PubMed ID: 12298213 [TBL] [Abstract][Full Text] [Related]
10. Calcium and the endothelin-1 and alpha 1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes. van Heugten HA; de Jonge HW; Bezstarosti K; Lamers JM J Mol Cell Cardiol; 1994 Aug; 26(8):1081-93. PubMed ID: 7528283 [TBL] [Abstract][Full Text] [Related]
11. Depression of calcium transients after exposure to high K+ solution in Li(+)-loaded frog twitch muscle fibres and its reversal by exogenous myo-inositol. Fu DX; Zhu PH Sci China B; 1993 Feb; 36(2):204-13. PubMed ID: 8318152 [TBL] [Abstract][Full Text] [Related]
12. Possible role of Ca ions in the resting metabolism of frog sartorius muscle during potassium depolarization. Novotný I; Vyskocil F J Cell Physiol; 1966 Feb; 67(1):159-68. PubMed ID: 5937009 [No Abstract] [Full Text] [Related]
13. Potentiation of caffeine-induced contracture by raising extracellular potassium in frog skeletal muscle. Chen KY; Zhu PH Sheng Li Xue Bao; 1999 Apr; 51(2):153-60. PubMed ID: 11499009 [TBL] [Abstract][Full Text] [Related]
14. Effect of acetylcholine on ion transport in the frog skeletal muscle. Kovács L; Szücs G; Török I Acta Physiol Acad Sci Hung; 1981; 58(2):93-101. PubMed ID: 6978595 [TBL] [Abstract][Full Text] [Related]
15. [Passive binding of Ca2+ by fragments of the sarcoplasmic reticulum of frog skeletal muscles]. Esyrev OV; Sarsenova ShS; Uspanova ZhK; Kniazevskaia IB; Turmukhambetova VK Vopr Med Khim; 1982; 28(5):51-5. PubMed ID: 6983776 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid pools in insect muscle: labelling by 32P in subcellular fractions in vivo. Markos A; Rokosová I; Strunecká A; Kubista V Physiol Bohemoslov; 1982; 31(4):289-96. PubMed ID: 6215657 [TBL] [Abstract][Full Text] [Related]
18. Influence of potassium and calcium ions on the phosphatidylinositol and phosphatidylcholine metabolism in rat fibroblasts after growth stimulation by calf serum. Ristow HJ; Hoffmann R; Pachowsky H; Frank W Eur J Biochem; 1975 Aug; 56(2):413-20. PubMed ID: 170106 [TBL] [Abstract][Full Text] [Related]
19. The breakdown of phosphatidylinositol in myoblasts stimulated to fuse by the addition of Ca2+. Wakelam MJ; Pette D Biochem J; 1982 Mar; 202(3):723-9. PubMed ID: 7092841 [TBL] [Abstract][Full Text] [Related]
20. [Influencing of the resynthesis of phosphocreatine in the isolated frog sartorius during continuous depolarization induced by K plus-ions]. Janke J; Oberdisse A; Petzoldt C Pflugers Arch; 1969; 307(2):R105. PubMed ID: 5814752 [No Abstract] [Full Text] [Related] [Next] [New Search]