BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6332832)

  • 1. Time course of mossy fiber degeneration following pontine ablation in the rat.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1984 Aug; 227(3):401-13. PubMed ID: 6332832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effect of mossy fiber degeneration in the rat.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1984 Aug; 227(3):414-23. PubMed ID: 6332833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural evidence for compensatory sprouting of climbing and mossy afferents to the cerebellar hemisphere after ipsilateral pedunculotomy in the newborn rat.
    Angaut P; Alvarado-Mallart RM; Sotelo C
    J Comp Neurol; 1982 Feb; 205(2):101-11. PubMed ID: 7076886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid.
    Nadler JV; Perry BW; Gentry C; Cotman CW
    J Comp Neurol; 1981 Mar; 196(4):549-69. PubMed ID: 7204671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphogenetic plasticity of neuronal elements in cerebellar glomeruli during deafferentation-induced synaptic reorganization.
    Hámori J; Jakab RL; Takács J
    J Neural Transplant Plast; 1997; 6(1):11-20. PubMed ID: 8959547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cerebellopontine system in the rat. II. Electron microscopic studies.
    Watt CB; Mihailoff GA
    J Comp Neurol; 1983 Jun; 216(4):429-37. PubMed ID: 6683728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition.
    Ji Z; Hawkes R
    J Comp Neurol; 1995 Aug; 359(2):197-212. PubMed ID: 7499524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study.
    Hámori J; Somogyi J
    J Comp Neurol; 1983 Nov; 220(4):365-77. PubMed ID: 6643733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats.
    Laurberg S; Zimmer J
    J Comp Neurol; 1981 Aug; 200(3):433-59. PubMed ID: 7276246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light and electron microscopic study of the effects of 3-acetylpyridine intoxication on the inferior olivary complex and cerebellar cortex.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1980 Mar; 190(1):157-74. PubMed ID: 7381051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrastructural investigation of afferent connections of the red nucleus in the rat.
    Flumerfelt BA
    J Anat; 1980 Dec; 131(Pt 4):621-33. PubMed ID: 7216902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional morphology of cerebellar protoplasmic islands and proteoglycan content of mossy fiber glomerulus: a scanning and transmission electron microscope study.
    Castejón OJ; Castejón HV
    Scanning Microsc; 1991 Jun; 5(2):477-92; discussion 492-4. PubMed ID: 1947930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthograde axonal transport studies of projections from the zona incerta and pretectum to the basilar pontine nuclei in the rat.
    Mihailoff GA
    J Comp Neurol; 1995 Sep; 360(2):301-18. PubMed ID: 8522649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey.
    Knyihar-Csillik E; Csillik B; Rakic P
    J Comp Neurol; 1982 Oct; 210(4):357-75. PubMed ID: 7142447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental degeneration of motor and sensory cortical terminals in the cuneate nucleus of the monkey (Macaca fascicularis).
    Wen CY; Wong WC; Tan CK
    J Anat; 1980 Jan; 130(Pt 1):13-23. PubMed ID: 6767675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction.
    Pierce JP; Milner TA
    Synapse; 2001 Mar; 39(3):249-56. PubMed ID: 11169773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projections from the pontine nuclei proper and reticular tegmental nucleus onto the cerebellar cortex in the cat. An autoradiographic study.
    Kawamura K; Hashikawa T
    J Comp Neurol; 1981 Sep; 201(3):395-413. PubMed ID: 7276257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time dependence of terminal degeneration in spino-cerebellar mossy fiber rosettes in the chicken and the application of terminal degeneration in successive degeneration experiments.
    Vielvoye GJ; Voogd J
    J Comp Neurol; 1977 Sep; 175(2):233-42. PubMed ID: 893741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal development of CA3 pyramidal neurons and their afferents in the Ammon's horn of rhesus monkeys.
    Seress L; Ribak CE
    Hippocampus; 1995; 5(3):217-31. PubMed ID: 7550617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization in vivo of bilaterally branching pontocerebellar mossy fibre to Golgi cell inputs in the rat cerebellum.
    Holtzman T; Cerminara NL; Edgley SA; Apps R
    Eur J Neurosci; 2009 Jan; 29(2):328-39. PubMed ID: 19077121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.