BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6332833)

  • 1. Long-term effect of mossy fiber degeneration in the rat.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1984 Aug; 227(3):414-23. PubMed ID: 6332833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of mossy fiber degeneration following pontine ablation in the rat.
    Anderson WA; Flumerfelt BA
    J Comp Neurol; 1984 Aug; 227(3):401-13. PubMed ID: 6332832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathogenesis of parvovirus-induced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, Golgi and electron microscopic studies.
    Oster-Granite ML; Herndon RM
    J Comp Neurol; 1976 Oct; 169(4):481-521. PubMed ID: 789416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input.
    Soriano E; Frotscher M
    J Comp Neurol; 1993 Jul; 333(3):435-48. PubMed ID: 8102385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of climbing fiber deafferentation in adult and weanling rats.
    Anderson WA; Flumerfelt BA
    Brain Res; 1986 Sep; 383(1-2):228-44. PubMed ID: 3768690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of deafferentation-induced presynaptic dendrites in the cerebellar cortex of adult rats.
    Tran MN; Hámori J
    J Hirnforsch; 1986; 27(3):269-78. PubMed ID: 3760542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term effects of parallel fiber loss in the cerebellar cortex of the adult and weanling rat.
    Anderson WA; Flumerfelt BA
    Brain Res; 1986 Sep; 383(1-2):245-61. PubMed ID: 3768691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of new synaptic contacts by Purkinje axon collaterals in the granular layer of deafferented cerebellar cortex of adult rat.
    Hámori J; Somogyi J
    Acta Biol Hung; 1983; 34(2-3):163-76. PubMed ID: 6229958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenetic plasticity of neuronal elements in cerebellar glomeruli during deafferentation-induced synaptic reorganization.
    Hámori J; Jakab RL; Takács J
    J Neural Transplant Plast; 1997; 6(1):11-20. PubMed ID: 8959547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid.
    Nadler JV; Perry BW; Gentry C; Cotman CW
    J Comp Neurol; 1981 Mar; 196(4):549-69. PubMed ID: 7204671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition.
    Ji Z; Hawkes R
    J Comp Neurol; 1995 Aug; 359(2):197-212. PubMed ID: 7499524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D electron microscopic reconstruction of segments of rat cerebellar Purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs.
    Lu H; Esquivel AV; Bower JM
    J Comp Neurol; 2009 Jun; 514(6):583-94. PubMed ID: 19363797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of parallel fibres in the cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin.
    Pichitpornchai C; Rawson JA; Rees S
    J Comp Neurol; 1994 Apr; 342(2):206-20. PubMed ID: 8201032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fine structure of the Purkinje cell and its afferents in lurcher chimeric mice.
    Caddy KW; Herrup K
    J Comp Neurol; 1991 Mar; 305(3):421-34. PubMed ID: 2037715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytology and organization of rat cerebellar organ cultures.
    Jaeger CB; Kapoor R; Llinás R
    Neuroscience; 1988 Aug; 26(2):509-38. PubMed ID: 3173688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional reconstruction and synaptic architecture of cerebellar glomeruli in the rat.
    Jakab RL
    Acta Morphol Hung; 1989; 37(1-2):11-20. PubMed ID: 2518341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse.
    Sotelo C
    Brain Res; 1975 Aug; 94(1):19-44. PubMed ID: 1148865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental scanning electron microscopic study of human cerebellar cortex using the t-butyl alcohol freeze-drying device.
    Hojo T
    Scanning Microsc; 1994; 8(2):303-13. PubMed ID: 7701301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions.
    Amaral DG; Dent JA
    J Comp Neurol; 1981 Jan; 195(1):51-86. PubMed ID: 7204652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of CA3 pyramidal neurons and their afferents in the Ammon's horn of rhesus monkeys.
    Seress L; Ribak CE
    Hippocampus; 1995; 5(3):217-31. PubMed ID: 7550617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.