These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 6334536)
1. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Pecoraro VL; Hermes JD; Cleland WW Biochemistry; 1984 Oct; 23(22):5262-71. PubMed ID: 6334536 [TBL] [Abstract][Full Text] [Related]
2. Structure of metal x nucleotide complex in the creatine kinase reaction. A study with diastereomeric phosphorothioate analogs of adenosine di- and triphosphate. Burgers PM; Eckstein F J Biol Chem; 1980 Sep; 255(17):8229-33. PubMed ID: 6893324 [TBL] [Abstract][Full Text] [Related]
3. Metal-nucleotide structural characteristics during catalysis by beef heart mitochondrial F1. Gruys KJ; Urbauer JL; Schuster SM J Biol Chem; 1985 Jun; 260(11):6533-40. PubMed ID: 2860107 [TBL] [Abstract][Full Text] [Related]
4. The interaction of phosphorothioate analogues of ATP with phosphomevalonate kinase. Kinetic and 31P NMR studies. Lee CS; O'Sullivan WJ J Biol Chem; 1985 Nov; 260(26):13909-15. PubMed ID: 2997186 [TBL] [Abstract][Full Text] [Related]
5. Does the magnesium(II) ion interact with the alpha-phosphate of adenosine triphosphate? An investigation by oxygen-17 nuclear magnetic resonance. Huang SL; Tsai MD Biochemistry; 1982 Mar; 21(5):951-9. PubMed ID: 7074064 [TBL] [Abstract][Full Text] [Related]
6. Phosphorothioate analogues of adenosine triphosphate as substrates of the mevalonate kinase reaction. Lee CS; O'Sullivan WJ Biochim Biophys Acta; 1984 Jun; 787(2):131-7. PubMed ID: 6329303 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the preferred Mg(II)-adenine-nucleotide complex at the active site of ectonucleotidases in intact vascular cells using phosphorothioate analogues of ADP and ATP. Pearson JD; Cusack NJ Eur J Biochem; 1985 Sep; 151(2):373-5. PubMed ID: 2992964 [TBL] [Abstract][Full Text] [Related]
8. The use of nucleotide phosphorothioate diastereomers to define the structure of metal-nucleotide bound to GTP-AMP and ATP-AMP phosphotransferases from beef-heart mitochondria. Tomasselli AG; Marquetant R; Noda LH; Goody RS Eur J Biochem; 1984 Jul; 142(2):287-9. PubMed ID: 6086346 [TBL] [Abstract][Full Text] [Related]
9. Substrate and inhibitor activities of the screw sense isomers of metal-nucleotide complexes in the formyltetrahydrofolate synthetase reaction. Mejillano MR; Wendland MF; Everett GW; Rabinowitz JC; Himes RH Biochemistry; 1986 Mar; 25(5):1067-72. PubMed ID: 3516212 [TBL] [Abstract][Full Text] [Related]
10. Mg2+ affects the binding of ADP but not ATP to 3-phosphoglycerate kinase. Correlation between equilibrium dialysis binding and enzyme kinetic data. Molnár M; Vas M Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):595-9. PubMed ID: 8343139 [TBL] [Abstract][Full Text] [Related]
11. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
12. Determination of the screw sense specificity of bovine liver fructokinase. Pecoraro VL; Rendina AR; Cleland WW Biochemistry; 1985 Mar; 24(7):1619-22. PubMed ID: 2988605 [TBL] [Abstract][Full Text] [Related]
13. A kinetic method for determining dissociation constants for metal complexes of adenosine 5'-triphosphate and adenosine 5'-diphosphate. Morrison JF; Cleland WW Biochemistry; 1980 Jul; 19(14):3127-31. PubMed ID: 7407034 [TBL] [Abstract][Full Text] [Related]
14. Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP. Flachner B; Kovári Z; Varga A; Gugolya Z; Vonderviszt F; Náray-Szabó G; Vas M Biochemistry; 2004 Mar; 43(12):3436-49. PubMed ID: 15035615 [TBL] [Abstract][Full Text] [Related]
15. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
16. Characterization and elucidation of coordination requirements of adenine nucleotides complexes with Fe(II) ions. Richter Y; Fischer B Nucleosides Nucleotides Nucleic Acids; 2003 Sep; 22(9):1757-80. PubMed ID: 14533880 [TBL] [Abstract][Full Text] [Related]
17. Metal-nucleotide structure at the active sites of the mammalian hexokinases. Darby MK; Trayer IP Eur J Biochem; 1983 Jan; 129(3):555-60. PubMed ID: 6825673 [TBL] [Abstract][Full Text] [Related]
18. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study. Peyser YM; Ajtai K; Werber MM; Burghardt TP; Muhlrad A Biochemistry; 1997 Apr; 36(17):5170-8. PubMed ID: 9136878 [TBL] [Abstract][Full Text] [Related]
19. Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets. Schwanstecher M; Löser S; Rietze I; Panten U Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):83-9. PubMed ID: 1903188 [TBL] [Abstract][Full Text] [Related]
20. Structure of the metal-nucleotide complex in the acetate kinase reaction. A study with gamma-32P-labeled phosphorothioate analogs of ATP. Romaniuk PJ; Eckstein F J Biol Chem; 1981 Jul; 256(14):7322-8. PubMed ID: 6265443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]