These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 6335666)
1. Evidence that the folate-requiring enzymes of de novo purine biosynthesis are encoded by individual mRNAs. Wasserman GF; Mueller WT; Benkovic SJ; Liao WS; Taylor J Biochemistry; 1984 Dec; 23(26):6704-10. PubMed ID: 6335666 [TBL] [Abstract][Full Text] [Related]
2. A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase activities in de novo purine biosynthesis. Daubner SC; Schrimsher JL; Schendel FJ; Young M; Henikoff S; Patterson D; Stubbe J; Benkovic SJ Biochemistry; 1985 Dec; 24(25):7059-62. PubMed ID: 4084560 [TBL] [Abstract][Full Text] [Related]
3. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Aimi J; Qiu H; Williams J; Zalkin H; Dixon JE Nucleic Acids Res; 1990 Nov; 18(22):6665-72. PubMed ID: 2147474 [TBL] [Abstract][Full Text] [Related]
4. On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver. Smith GK; Mueller WT; Benkovic PA; Benkovic SJ Biochemistry; 1981 Mar; 20(5):1241-5. PubMed ID: 7225325 [TBL] [Abstract][Full Text] [Related]
6. The human trifunctional enzyme of de novo purine biosynthesis: heterologous expression, purification, and preliminary characterization. Poch MT; Qin W; Caperelli CA Protein Expr Purif; 1998 Feb; 12(1):17-24. PubMed ID: 9473452 [TBL] [Abstract][Full Text] [Related]
7. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis. Smith GK; Mueller WT; Slieker LJ; DeBrosse CW; Benkovic SJ Biochemistry; 1982 Jun; 21(12):2870-4. PubMed ID: 7104299 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes. Schnorr KM; Nygaard P; Laloue M Plant J; 1994 Jul; 6(1):113-21. PubMed ID: 7920700 [TBL] [Abstract][Full Text] [Related]
9. Developmental changes in the folate-dependent enzymes of de novo purine biosynthesis in rat brain. Domínguez J; Ordóñez LA J Neurochem; 1982 Mar; 38(3):625-30. PubMed ID: 7057182 [TBL] [Abstract][Full Text] [Related]
10. Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase. Schrimsher JL; Schendel FJ; Stubbe J Biochemistry; 1986 Jul; 25(15):4356-65. PubMed ID: 3756144 [TBL] [Abstract][Full Text] [Related]
11. Mammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities. Caperelli CA J Biol Chem; 1989 Mar; 264(9):5053-7. PubMed ID: 2925682 [TBL] [Abstract][Full Text] [Related]
12. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Caperelli CA; Giroux EL Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Smith GK; Mueller WT; Wasserman GF; Taylor WD; Benkovic SJ Biochemistry; 1980 Sep; 19(18):4313-21. PubMed ID: 7417406 [TBL] [Abstract][Full Text] [Related]
14. Effect of nitrous oxide-induced inactivation of vitamin B12 on glycinamide ribonucleotide transformylase and 5-amino-4-imidazole carboxamide transformylase. Deacon R; Perry J; Lumb M; Chanarin I Biochem Biophys Res Commun; 1983 Apr; 112(1):327-31. PubMed ID: 6838615 [TBL] [Abstract][Full Text] [Related]
15. Structural and mechanistic studies on the HeLa and chicken liver proteins that catalyze glycinamide ribonucleotide synthesis and formylation and aminoimidazole ribonucleotide synthesis. Daubner SC; Young M; Sammons RD; Courtney LF; Benkovic SJ Biochemistry; 1986 May; 25(10):2951-7. PubMed ID: 3718932 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase. Kirksey TJ; Appling DR Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778 [TBL] [Abstract][Full Text] [Related]
17. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glycinamide ribonucleotide synthetase. Kan JL; Jannatipour M; Taylor SM; Moran RG Gene; 1993 Dec; 137(2):195-202. PubMed ID: 8299947 [TBL] [Abstract][Full Text] [Related]
19. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Brodsky G; Barnes T; Bleskan J; Becker L; Cox M; Patterson D Hum Mol Genet; 1997 Nov; 6(12):2043-50. PubMed ID: 9328467 [TBL] [Abstract][Full Text] [Related]
20. Multifactorial resistance to 5,10-dideazatetrahydrofolic acid in cell lines derived from human lymphoblastic leukemia CCRF-CEM. Pizzorno G; Moroson BA; Cashmore AR; Russello O; Mayer JR; Galivan J; Bunni MA; Priest DG; Beardsley GP Cancer Res; 1995 Feb; 55(3):566-73. PubMed ID: 7834626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]