These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6336248)

  • 1. The vestibulospinal free fall response: a test of descending function in spinal-injured cats.
    Gruner JA; Young W; DeCrescito V
    Cent Nerv Syst Trauma; 1984; 1(2):139-59. PubMed ID: 6336248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmentation by 4-aminopyridine of vestibulospinal free fall responses in chronic spinal-injured cats.
    Blight AR; Gruner JA
    J Neurol Sci; 1987 Dec; 82(1-3):145-59. PubMed ID: 2831307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of spinal cord lesions on forelimb target-reaching and on visually guided switching of target-reaching in the cat.
    Pettersson LG; Lundberg A; Alstermark B; Isa T; Tantisira B
    Neurosci Res; 1997 Nov; 29(3):241-56. PubMed ID: 9436650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of vestibular and auditory startle responses in the rat and cat.
    Gruner JA
    J Neurosci Methods; 1989 Feb; 27(1):13-23. PubMed ID: 2537448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant lesion effect: I. Development of motor behavior following neonatal spinal cord damage in cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):103-17. PubMed ID: 6604564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy.
    Wakabayashi Y; Komori H; Kawa-Uchi T; Mochida K; Takahashi M; Qi M; Otake K; Shinomiya K
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1215-22. PubMed ID: 11389386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roll tilt reflexes after vestibulospinal tract lesions.
    Miller AD; Roossin PS; Schor RH
    Exp Brain Res; 1982; 48(1):107-12. PubMed ID: 6291973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat. II. Conditions of the interneuronal connections.
    Schomburg ED; Steffens H; Warneke G
    Brain Res; 1986 Jun; 375(2):280-90. PubMed ID: 3015331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibulospinal evoked potential versus motor evoked potential monitoring in experimental spinal cord injuries of cats.
    Zileli M; Taniguchi M; Cedzich C; Schramm J
    Acta Neurochir (Wien); 1989; 101(3-4):141-8. PubMed ID: 2618820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonpyramidal motor activation produced by stimulation of the cerebellum, direct or transcranial: a cerebellar evoked potential.
    Levy WJ; McCaffrey M; Goldman D; York DH
    Neurosurgery; 1986 Aug; 19(2):163-76. PubMed ID: 3748346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of dynamic properties of canal-evoked vestibulospinal reflexes of the neck and forelimb in the decerebrate cat.
    Hirai N; Hwang JC; Wilson VJ
    Exp Brain Res; 1979 Jul; 36(2):393-7. PubMed ID: 488209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of vestibulospinal reflexes during the episodes of postural atonia induced by unilateral lesion of the locus coeruleus in the decerebrate cat.
    D'Ascanio P; Pompeiano M; Tononi G
    Arch Ital Biol; 1989 Mar; 127(2):81-97. PubMed ID: 2719523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caloric stimulation-induced augmentation of H-reflexes in normal subjects, but not in spinal cord-injured patients.
    Raffensperger M; York DH
    Neurosurgery; 1984 May; 14(5):562-6. PubMed ID: 6728162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms.
    Brustein E; Rossignol S
    J Neurophysiol; 1998 Sep; 80(3):1245-67. PubMed ID: 9744936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction.
    Farooque M
    Acta Neuropathol; 2000 Jul; 100(1):13-22. PubMed ID: 10912915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge patterns of reticulospinal neurons corresponding with quadrupedal leg movements in thalamic cats.
    Shimamura M; Kogure I
    Brain Res; 1983 Jan; 260(1):27-34. PubMed ID: 6824953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of vestibular and neck reflexes in forelimb extensor muscles during the episodes of postural atonia induced by an anticholinesterase in decerebrate cat.
    Manzoni D; Pompeiano O; Srivastava UC; Stampacchia G
    Arch Ital Biol; 1983 Dec; 121(4):267-83. PubMed ID: 6609688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.