These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR. Gettins P; Coleman JE J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493 [TBL] [Abstract][Full Text] [Related]
7. 31P NMR of alkaline phosphatase. Saturation transfer and metal-phosphorus coupling. Otvos JD; Alger JR; Coleman JE; Armitage IM J Biol Chem; 1979 Mar; 254(6):1778-80. PubMed ID: 33981 [TBL] [Abstract][Full Text] [Related]
8. Alkaline phosphatase. 31P NMR probes of the mechanism. Gettins P; Metzler M; Coleman JE J Biol Chem; 1985 Mar; 260(5):2875-83. PubMed ID: 3882702 [TBL] [Abstract][Full Text] [Related]
9. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715 [TBL] [Abstract][Full Text] [Related]
10. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Hull WE; Halford SE; Gutfreund H; Sykes BD Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092 [TBL] [Abstract][Full Text] [Related]
11. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. Coleman JE; Nakamura K; Chlebowski JF J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751 [TBL] [Abstract][Full Text] [Related]
12. 31P NMR of phosphate and phosphonate complexes of metalloalkaline phosphatases. Chlebowski JF; Armitage IM; Tusa PP; Coleman JE J Biol Chem; 1976 Feb; 251(4):1207-16. PubMed ID: 2606 [TBL] [Abstract][Full Text] [Related]
14. On the coordination of inhibitors to the metal ion of carboxypeptidase A. A 113Cd and 31P NMR study. Gettins P J Biol Chem; 1986 Nov; 261(33):15513-8. PubMed ID: 3782076 [TBL] [Abstract][Full Text] [Related]
15. 113Cd nuclear magnetic resonance (NMR) study of the inhibitory effect of methylvinylether/maleic acid (PVM/MA) copolymer on the alkaline phosphatase of Escherichia coli. Afflitto J; Smith KA; Patel M; Esposito A; Jensen E; Gaffar A Pharm Res; 1991 Nov; 8(11):1384-8. PubMed ID: 1798674 [TBL] [Abstract][Full Text] [Related]
16. 1H, 113Cd, and 31P NMR of osteocalcin (bovine gamma-carboxyglutamic acid containing protein). Prigodich RV; O'Connor T; Coleman JE Biochemistry; 1985 Oct; 24(22):6291-8. PubMed ID: 3878727 [TBL] [Abstract][Full Text] [Related]
17. Metal dependence of the phosphate (oxygen)-water exchange reaction of Escherichia coli alkaline phosphatase. Kinetics followed by 31P(18O) NMR. Bock JL; Cohn M J Biol Chem; 1978 Jun; 253(12):4082-5. PubMed ID: 350868 [TBL] [Abstract][Full Text] [Related]
18. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical properties of cloned nucleocapsid protein from HIV. Interactions with metal ions. Fitzgerald DW; Coleman JE Biochemistry; 1991 May; 30(21):5195-201. PubMed ID: 2036385 [TBL] [Abstract][Full Text] [Related]
20. Thermolysin-inhibitor complexes examined by 31P and 113Cd NMR spectroscopy. Gettins P J Biol Chem; 1988 Jul; 263(21):10208-11. PubMed ID: 3392009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]