These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 6336913)

  • 1. The nature of electrical propagation in cardiac muscle.
    Spach MS; Kootsey JM
    Am J Physiol; 1983 Jan; 244(1):H3-22. PubMed ID: 6336913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discontinuous nature of electrical propagation in cardiac muscle. Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities. The ALZA distinguished lecture.
    Spach MS
    Ann Biomed Eng; 1983; 11(3-4):209-61. PubMed ID: 6670785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation through electrically coupled cells. Effects of a resistive barrier.
    Joyner RW; Veenstra R; Rawling D; Chorro A
    Biophys J; 1984 May; 45(5):1017-25. PubMed ID: 6733238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous and discontinuous propagation in heart muscle.
    de Bakker JM; van Rijen HM
    J Cardiovasc Electrophysiol; 2006 May; 17(5):567-73. PubMed ID: 16684038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low conduction in cardiac muscle. Biophysical model.
    Lieberman M; Kootsey JM; Johnson EA; Sawanobori T
    Biophys J; 1973 Jan; 13(1):37-55. PubMed ID: 4709519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity.
    Spach MS; Miller WT; Dolber PC; Kootsey JM; Sommer JR; Mosher CE
    Circ Res; 1982 Feb; 50(2):175-91. PubMed ID: 7055853
    [No Abstract]   [Full Text] [Related]  

  • 10. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated propagation of cardiac action potentials.
    Sharp GH; Joyner RW
    Biophys J; 1980 Sep; 31(3):403-23. PubMed ID: 7260295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of barriers on propagation of action potentials in two-dimensional cardiac tissue. A computer simulation study.
    Maglaveras N; Offner F; van Capelle FJ; Allessie MA; Sahakian AV
    J Electrocardiol; 1995 Jan; 28(1):17-31. PubMed ID: 7897334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation.
    Spach MS; Dolber PC; Heidlage JF
    Circ Res; 1988 Apr; 62(4):811-32. PubMed ID: 2450697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ.
    Roberts DE; Scher AM
    Circ Res; 1982 Mar; 50(3):342-51. PubMed ID: 7060230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic cardiac electrophysiology and mechanisms of antiarrhythmic agents.
    Perry RS; Illsley SS
    Am J Hosp Pharm; 1986 Apr; 43(4):957-74. PubMed ID: 2871752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unidirectional block in cardiac fibers: effects of discontinuities in coupling resistance and spatial changes in resting membrane potential in a computer simulation study.
    Sahakian AV; Myers GA; Maglaveras N
    IEEE Trans Biomed Eng; 1992 May; 39(5):510-22. PubMed ID: 1526641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity.
    Spach MS; Kootsey JM; Sloan JD
    Circ Res; 1982 Sep; 51(3):347-62. PubMed ID: 7116583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation mechanisms in heart.
    Sperelakis N
    Annu Rev Physiol; 1979; 41():441-57. PubMed ID: 373599
    [No Abstract]   [Full Text] [Related]  

  • 20. Combined electric field and gap junctions on propagation of action potentials in cardiac muscle and smooth muscle in PSpice simulation.
    Sperelakis N
    J Electrocardiol; 2003 Oct; 36(4):279-93. PubMed ID: 14661164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.