BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6337634)

  • 1. Remarkable positional (regio)specificity of xanthine oxidase and some dehydrogenases in the reactions with substituted benzaldehydes.
    Pelsy G; Klibanov AM
    Biochim Biophys Acta; 1983 Jan; 742(2):352-7. PubMed ID: 6337634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent effects during the rat liver aldehyde dehydrogenase catalyzed oxidation of aromatic aldehydes.
    Rietveld EC; de Zwart M; Cox PG; Seutter-Berlage F
    Biochim Biophys Acta; 1987 Aug; 914(2):162-9. PubMed ID: 3300781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes.
    Veskoukis AS; Kouretas D; Panoutsopoulos GI
    Eur J Drug Metab Pharmacokinet; 2006; 31(1):11-6. PubMed ID: 16715777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes.
    Panoutsopoulos GI; Beedham C
    Acta Biochim Pol; 2004; 51(3):649-63. PubMed ID: 15448727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications.
    Shaw JP; Schwager F; Harayama S
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):789-94. PubMed ID: 1590768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfoxide reductase activity of liver aldehyde oxidase.
    Tatsumi K; Kitamura S; Yamada H
    Biochim Biophys Acta; 1983 Sep; 747(1-2):86-92. PubMed ID: 6688361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver.
    Rashidi MR; Smith JA; Clarke SE; Beedham C
    Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the specificity toward aldehyde substrates and steady-state kinetics of xanthine oxidase.
    Morpeth FF
    Biochim Biophys Acta; 1983 May; 744(3):328-34. PubMed ID: 6687810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen.
    Xia M; Dempski R; Hille R
    J Biol Chem; 1999 Feb; 274(6):3323-30. PubMed ID: 9920873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices.
    Panoutsopoulos GI; Beedham C
    Pharmacology; 2005 Mar; 73(4):199-208. PubMed ID: 15627845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases.
    Beedham C; Bruce SE; Critchley DJ; Rance DJ
    Biochem Pharmacol; 1990 Apr; 39(7):1213-21. PubMed ID: 2322306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of 1-amino- and 1-chlorophthalazine with mammalian molybdenum hydroxylases in vitro.
    Johnson C; Beedham C; Stell JG
    Xenobiotica; 1987 Jan; 17(1):17-24. PubMed ID: 3825175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.
    MacKintosh RW; Fewson CA
    Biochem J; 1988 Oct; 255(2):653-61. PubMed ID: 3060114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases.
    Wahl RC; Rajagopalan KV
    J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of selected pteridine derivatives by mamalian liver xanthine oxidase and aldehyde oxidase.
    Hodnett CN; McCormack JJ; Sabean JA
    J Pharm Sci; 1976 Aug; 65(8):1150-4. PubMed ID: 185353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic probes of the mechanism of substrate oxidation by buttermilk xanthine oxidase: role of the active-site nucleophile in oxidation.
    Skibo EB; Gilchrist JH; Lee CH
    Biochemistry; 1987 Jun; 26(11):3032-7. PubMed ID: 3607009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic analyses of alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde reductase, aldehyde oxidase and xanthine oxidase from horse tissues.
    Seeley TL; Mather PB; Holmes RS
    Comp Biochem Physiol B; 1984; 78(1):131-9. PubMed ID: 6378510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase.
    Tweedie DJ; Fernandez D; Spearman ME; Feldhoff RC; Prough RA
    Drug Metab Dispos; 1991; 19(4):793-803. PubMed ID: 1680657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.