These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 6337846)
41. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H; Leon O Nucleic Acids Res; 1987 Dec; 15(24):10523-30. PubMed ID: 3320968 [TBL] [Abstract][Full Text] [Related]
42. The amino acid activation reaction catalyzed by methionyl-transfer rna synthetase: evidence for synergistic coupling between the sites for methionine adenosine and pyrophosphate. Blanquet S; Fayat G; Waller JP J Mol Biol; 1975 May; 94(1):1-15. PubMed ID: 167177 [No Abstract] [Full Text] [Related]
43. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes. Pelka H; Schulman LH Biochemistry; 1986 Jul; 25(15):4450-6. PubMed ID: 3092857 [TBL] [Abstract][Full Text] [Related]
44. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase. Samuel CE; Rabinowitz JC J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871 [TBL] [Abstract][Full Text] [Related]
46. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. Crepin T; Schmitt E; Mechulam Y; Sampson PB; Vaughan MD; Honek JF; Blanquet S J Mol Biol; 2003 Sep; 332(1):59-72. PubMed ID: 12946347 [TBL] [Abstract][Full Text] [Related]
47. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase. Jakubowski H J Biol Chem; 1993 Mar; 268(9):6549-53. PubMed ID: 8454625 [TBL] [Abstract][Full Text] [Related]
48. Investigation of bioisosteric effects on the interaction of substrates/ inhibitors with the methionyl-tRNA synthetase from Escherichia coli. Vaughan MD; Sampson PB; Daub E; Honek JF Med Chem; 2005 May; 1(3):227-37. PubMed ID: 16787318 [TBL] [Abstract][Full Text] [Related]
49. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA. Hountondji C; Lederer F; Dessen P; Blanquet S Biochemistry; 1986 Jan; 25(1):16-21. PubMed ID: 3513822 [TBL] [Abstract][Full Text] [Related]
50. General structure/function properties of microbial methionyl-tRNA synthetases. Schmitt E; Panvert M; Mechulam Y; Blanquet S Eur J Biochem; 1997 Jun; 246(2):539-47. PubMed ID: 9208948 [TBL] [Abstract][Full Text] [Related]
51. Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli. Bruton C; Jakes R; Atkinson T Eur J Biochem; 1975 Nov; 59(2):327-33. PubMed ID: 1107028 [TBL] [Abstract][Full Text] [Related]
52. The effect of adenosine analogues on the ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Lawrence F; Shire DJ; Waller JP Eur J Biochem; 1974 Jan; 41(1):73-81. PubMed ID: 4361287 [No Abstract] [Full Text] [Related]
53. Deletion analysis in the amino-terminal extension of methionyl-tRNA synthetase from Saccharomyces cerevisiae shows that a small region is important for the activity and stability of the enzyme. Walter P; Weygand-Durasevic I; Sanni A; Ebel JP; Fasiolo F J Biol Chem; 1989 Oct; 264(29):17126-30. PubMed ID: 2677000 [TBL] [Abstract][Full Text] [Related]
54. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase. Fourmy D; Mechulam Y; Blanquet S Biochemistry; 1995 Dec; 34(48):15681-8. PubMed ID: 7495798 [TBL] [Abstract][Full Text] [Related]
55. Antico-operative binding of bacterial and mammalian initiator tRNAMet to methionyl-tRNA synthetase from escherichia coli. Blanquet S; Dessen P J Mol Biol; 1976 Jun; 103(4):765-84. PubMed ID: 781286 [No Abstract] [Full Text] [Related]
56. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. Kern D; Potier S; Lapointe J; Boulanger Y Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402 [TBL] [Abstract][Full Text] [Related]
57. Identification of residues involved in the binding of methionine by Escherichia coli methionyl-tRNA synthetase. Fourmy D; Mechulam Y; Brunie S; Blanquet S; Fayat G FEBS Lett; 1991 Nov; 292(1-2):259-63. PubMed ID: 1959615 [TBL] [Abstract][Full Text] [Related]
58. Flexibility and communication within the structure of the Mycobacterium smegmatis methionyl-tRNA synthetase. Ingvarsson H; Unge T FEBS J; 2010 Oct; 277(19):3947-62. PubMed ID: 20796028 [TBL] [Abstract][Full Text] [Related]
59. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase. Fourmy D; Meinnel T; Mechulam Y; Blanquet S J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465 [TBL] [Abstract][Full Text] [Related]
60. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase. Leon O; Schulman LH Biochemistry; 1987 Nov; 26(22):7113-21. PubMed ID: 3122828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]