These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6338844)

  • 1. The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs.
    Luce JM; Huang TW; Robertson HT; Colley PS; Gronka R; Nessly ML; Cheney FW
    Ann Surg; 1983 Mar; 197(3):327-36. PubMed ID: 6338844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs.
    Luce JM; Robertson HT; Huang T; Colley PS; Gronka R; Nessly ML; Cheney FW
    Am Rev Respir Dis; 1982 Jun; 125(6):716-22. PubMed ID: 6807153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional residual capacity as a noninvasive indicator of optimal positive end-expiratory pressure.
    East TD; in't Veen JC; Pace NL; McJames S
    J Clin Monit; 1988 Apr; 4(2):91-8. PubMed ID: 3131493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extubation from ambient or expiratory positive airway pressure in adults.
    Quan SF; Falltrick RT; Schlobohm RM
    Anesthesiology; 1981 Jul; 55(1):53-6. PubMed ID: 7018325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous positive airway pressure and expiratory positive airway pressure increase functional residual capacity equivalently.
    Layon J; Banner MJ; Jaeger MJ; Peterson CV; Gallagher TJ; Modell JH
    Chest; 1986 Apr; 89(4):517-21. PubMed ID: 3514166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-controlled positive end-expiratory pressure titration for effective oxygenation without frequent blood gases.
    East TD; in't Veen JC; Jonker TA; Pace NL; McJames S
    Crit Care Med; 1988 Mar; 16(3):252-7. PubMed ID: 3277782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary epithelial permeability and gas exchange: a comparison of inverse ratio ventilation and conventional mechanical ventilation in oleic acid-induced lung injury in rabbits.
    Ludwigs U; Philip A
    Chest; 1998 Feb; 113(2):459-66. PubMed ID: 9498967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of lung stress index on titration of positive end-expiratory pressure at post-recruitment in three canine acute respiratory distress syndrome models].
    Qiu HB; Chen YM; Yang Y; Shen JF; Li JQ; Li N; Wu B
    Zhonghua Wai Ke Za Zhi; 2006 Sep; 44(17):1181-4. PubMed ID: 17147862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Relationship of stress index with lung recruitment and gas exchange in dogs with acute respiratory distress syndrome].
    Qiu HB; Chen YM; Yang Y; Shen JF; Li JQ; Wu B; Li N
    Zhonghua Jie He He Hu Xi Za Zhi; 2006 Aug; 29(8):554-7. PubMed ID: 17074271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physiologic effects of inverse ratio ventilation.
    Yanos J; Watling SM; Verhey J
    Chest; 1998 Sep; 114(3):834-8. PubMed ID: 9743175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does airway pressure release ventilation alter lung function after acute lung injury?
    Smith RA; Smith DB
    Chest; 1995 Mar; 107(3):805-8. PubMed ID: 7874957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Impairment of gas exchange in acute lung injury].
    Yamaguchi K; Mori M; Kawai A; Asano K; Takasugi T; Umeda A; Yokoyama T
    Nihon Kyobu Shikkan Gakkai Zasshi; 1991 Feb; 29(2):133-44. PubMed ID: 2033887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional and morphologic analysis of pressure-controlled inverse ratio ventilation in oleic acid-induced lung injury.
    Ludwigs U; Klingstedt C; Baehrendtz S; Wegenius G; Hedenstierna G
    Chest; 1994 Sep; 106(3):925-31. PubMed ID: 8082379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-controlled inverse ratio ventilation in oleic acid induced lung injury. Effects on gas exchange, hemodynamics, and computed tomographic lung density.
    Ludwigs U; Klingstedt C; Baehrendtz S; Wegenius G; Hedenstierna G
    Chest; 1995 Sep; 108(3):804-9. PubMed ID: 7656637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant treatment impairs gas exchange in a canine model of acute lung injury.
    Waugh JB; Op't Holt TB; Olson LE; Gadek JE; Clanton TL
    Crit Care Med; 2000 Aug; 28(8):2887-92. PubMed ID: 10966266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Positive end-expiratory pressure and tidal volume titration after recruitment maneuver in a canine model of acute respiratory distress syndrome].
    Zhan QY; Wang C; Sun B; Pang BS
    Zhonghua Jie He He Hu Xi Za Zhi; 2005 Nov; 28(11):763-8. PubMed ID: 16324272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema.
    Saul GM; Feeley TW; Mihm FG
    Crit Care Med; 1982 Oct; 10(10):667-9. PubMed ID: 6749435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prone position improves arterial oxygenation and reduces shunt in oleic-acid-induced acute lung injury.
    Albert RK; Leasa D; Sanderson M; Robertson HT; Hlastala MP
    Am Rev Respir Dis; 1987 Mar; 135(3):628-33. PubMed ID: 3030168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of indomethacin and PEEP on oleic acid induced pulmonary oedema in rabbits.
    Panaretto KS; Phillips C; Berend N
    Eur Respir J; 1991 Jul; 4(7):853-9. PubMed ID: 1955008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of increasing end-expiratory pressure on extravascular lung water.
    Peitzman AB; Corbett WA; Shires GT; Lynch NJ; Shires GT
    Surgery; 1981 Sep; 90(3):439-45. PubMed ID: 7022725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.