These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 633927)

  • 1. Dynamics of phosphate limited algal growth: simulation of phosphate shocks.
    Nyholm N
    J Theor Biol; 1978 Feb; 70(4):415-25. PubMed ID: 633927
    [No Abstract]   [Full Text] [Related]  

  • 2. [Synthesis and degradation of the phosphate transport system in Chlorella pyrenoidosa].
    Jeanjean R; Ducet G
    Biochimie; 1974; 56(4):613-5. PubMed ID: 4424584
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphate assimilation by Chlorella and adjustment of phosphate concentration in basal medium for its cultivation.
    Qu CB; Wu ZY; Shi XM
    Biotechnol Lett; 2008 Oct; 30(10):1735-40. PubMed ID: 18566756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dynamics of accumulation of microelements in Chlorella cells during prolonged cultivation].
    Pokrovskaia EI; Meleshko GI; Zhurenko VN; Filatkina LA; Zhukova LB
    Kosm Biol Aviakosm Med; 1974; 8(5):41-7. PubMed ID: 4431217
    [No Abstract]   [Full Text] [Related]  

  • 6. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations.
    Feng P; Deng Z; Fan L; Hu Z
    J Biosci Bioeng; 2012 Oct; 114(4):405-10. PubMed ID: 22698727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of CO₂ fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor.
    Kasiri S; Ulrich A; Prasad V
    Bioresour Technol; 2015 Oct; 194():144-55. PubMed ID: 26188557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthophosphate influx and efflux rates of Chlorella fusca measured in a continuous turbidostat culture with 32P under various conditions.
    Schneider K; Frischknecht K
    Arch Microbiol; 1977 Dec; 115(3):339-46. PubMed ID: 603340
    [No Abstract]   [Full Text] [Related]  

  • 10. The contribution of bacteria to algal growth by carbon cycling.
    Bai X; Lant P; Pratt S
    Biotechnol Bioeng; 2015 Apr; 112(4):688-95. PubMed ID: 25312046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima.
    Arora N; Patel A; Pruthi PA; Pruthi V
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1534-1541. PubMed ID: 27465038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae.
    Kumar HD; Sharma V; Bisaria GP
    Z Allg Mikrobiol; 1975; 15(5):333-7. PubMed ID: 810977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of Chlorella sp. with livestock waste compost for lipid production.
    Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K
    Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738.
    Kanaga K; Pandey A; Kumar S; Geetanjali
    Bioresour Technol; 2016 Jan; 200():940-50. PubMed ID: 26613206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process.
    Ghosh S; Roy S; Das D
    Bioresour Technol; 2017 Jan; 223():219-226. PubMed ID: 27794270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors.
    Wang W; Han F; Li Y; Wu Y; Wang J; Pan R; Shen G
    Bioresour Technol; 2014 Oct; 170():395-403. PubMed ID: 25156876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building a better mousetrap I: using Design of Experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234.
    Hallenbeck PC; Grogger M; Mraz M; Veverka D
    Bioresour Technol; 2015 May; 184():82-89. PubMed ID: 25465787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic model describing heterotrophic culture of Chlorella and its stability analysis.
    Zhang Y; Ma W; Yan H; Takeuchi Y
    Math Biosci Eng; 2011 Oct; 8(4):1117-33. PubMed ID: 21936603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of phosphate limited algal growth.
    Nyholm N
    Biotechnol Bioeng; 1977 Apr; 19(4):467-92. PubMed ID: 856323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of pollution-tolerant strains of unicellular algae through mutagenic treatment. I. Ethyl methane sulphonate.
    Kumar HD; Sharma V; Bisaria GP
    Z Allg Mikrobiol; 1974; 14(6):487-96. PubMed ID: 4376307
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.